We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Chip Identifies Toxicity as a Biological Quality

By LabMedica International staff writers
Posted on 30 Jul 2012
Print article
Image: Scientists have combined biology and engineering to produce a biosensor device called the "Dip Chip," which detects toxicity quickly and accurately, generating low false positive and false negative readings (Photo courtesy of Tel Aviv University).
Image: Scientists have combined biology and engineering to produce a biosensor device called the "Dip Chip," which detects toxicity quickly and accurately, generating low false positive and false negative readings (Photo courtesy of Tel Aviv University).
A biosensor detects toxicity quickly and accurately, generating low false positive and false negative readings.

Called the Dip Chip, the device contains microbes designed to exhibit a biological reaction to toxic chemicals, emulating the biological responses of humans or animals.

Invented by Prof. Yosi Shacham-Diamand, vice dean of Tel Aviv University's Faculty of Engineering (Ramat Aviv, Israel) together with Prof. Shimshon Belkin of the Institute of Life Sciences at the Hebrew University of Jerusalem (Givat Ram, Jerusalem, Israel), the device contains microbes designed to exhibit a biological reaction to toxic chemicals, emulating the biological responses of humans or animals. The biological reaction is converted into an electronic signal that can be read by the user.

"In my lab, we developed a method for communicating with the microbes, converting this biological response to electrical signals," Prof. Shacham-Diamand explained. The device, which looks like a dipstick, immobilizes these specially produced microbes next to the sensing electrodes. Once the microbes come into contact with a questionable substance they produce a chemical signal that is converted to an electrical current by a device that can interpret the signals, producing a binary toxic or not toxic diagnosis.

The new chips are based on genetically modified microbes developed in Prof. Belkin's lab. When the modified microbes are exposed to toxic or poisonous materials, they produce a measurable biochemical reaction, which is converted into to electrical signals.

The Dip Chip is designed to alert the user to overall toxicity. Because the chip measures general toxicity, it will pick up on any and all toxic materials -- even those that have not been discovered or invented. Beyond their ability to find toxic chemicals in the field, these chips can also be put to use in the cosmetics or pharmaceutical industries, said Prof. Shacham-Diamand.

Related Links:
Tel Aviv University's Faculty of Engineering
Institute of Life Sciences at the Hebrew University of Jerusalem


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.