Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




MicroRNA Biomarker Distinguishes Growth of Aggressive Prostate Tumors

By LabMedica International staff writers
Posted on 08 Jul 2019
A microRNA biomarker found in the urine of men with prostate cancer can distinguish slow growing cancers from potentially life-threatening aggressive tumors.

Current screening tools, including biopsy and blood screening for prostate specific antigen (PSA), are not able to differentiate between the 25% to 40% of patients with slow growing clinically insignificant disease, and the 20% to 35% of patients with aggressive prostate cancer who may not receive appropriate treatment.

Investigators at the University of California, Los Angeles (USA) and collaborators at the University of Toronto (Canada) sought to develop a non-invasive test for the early detection of aggressive prostate tumors and hypothesized that miRNAs in the urine might prove to be appropriate biomarkers for this purpose.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. Furthermore, miRNAs play essential roles in tumor development, are stable under diverse analytical conditions, and can be readily detected in body fluids.

For this study, the investigators measured the longitudinal stability of 673 miRNAs collected from serial urine samples from 10 patients with localized prostate cancer. They then measured temporally stable miRNAs in an independent training cohort and created a biomarker predictive of Gleason grade using machine-learning techniques. Finally, they validated this biomarker in an independent validation cohort.

Results revealed that each individual had a specific urine miRNA fingerprint. These fingerprints were temporally stable, and associated with specific biological functions. Seven miRNAs were identified that were stable over time within individual patients, and these were combined with machine-learning techniques to create a novel biomarker for prostate cancer that overcame inter-individual variability. This urine biomarker robustly identified high-risk patients and achieved similar accuracy as tissue-based diagnostic markers.

"We developed a three-stage experimental strategy that would maximize statistical and data science considerations to give us the best chance of finding a biomarker to predict prostate cancer aggressiveness," said senior author Dr. Paul Boutros, professor of urology and human genetics at the University of California, Los Angeles. "What this test does is gives the clinician, the patient, and their caregivers confidence in their treatment plan."

The study was published in the June 4, 2019, online edition of the Journal of the National Cancer Institute.

Related Links:
University of California, Los Angeles
University of Toronto


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.