We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Blood Test Developed for Alzheimer's Diagnosis

By LabMedica International staff writers
Posted on 30 Mar 2016
Print article
Image: The Vertex 70v Fourier-transform infrared (FTIR) spectrometer (Photo courtesy of Bruker Optics GmbH).
Image: The Vertex 70v Fourier-transform infrared (FTIR) spectrometer (Photo courtesy of Bruker Optics GmbH).
A blood test has been developed that may potentially facilitate detection of Alzheimer's disease at an early stage and it is based on an immuno-chemical analysis using an infrared sensor.

A major problem of Alzheimer's disease (AD) diagnosis is the fact that, by the time the first clinical symptoms appear, massive irreversible damage to the brain has already occurred and at that point, symptomatic treatment is the only available option.

Scientists at the Ruhr-University Bochum (Germany) and their colleagues analyzed the secondary structure of Amyloid-beta (Aβ) peptide in cerebrospinal fluid (CSF) and blood plasma of 141 patients which was measured with an immuno-infrared-sensor. The sensor's surface is coated with highly specific antibodies which extract biomarkers for Alzheimer's from the blood or the CSF, taken from the lower part of the back. The infrared sensor analyses of the biomarkers showed pathological changes, which can take place more than 15 years before any clinical symptoms appear. A Vertex 70v Fourier-transform infrared (FTIR) spectrometer (Bruker Optics GmbH; Ettlingen, Germany), equipped with a liquid nitrogen cooled mercury cadmium telluride (MCT) detector and water cooled, high efficiency mid- infrared (MIR) source was used.

The team achieved a diagnostic precision of 84% in the blood and 90% in cerebrospinal fluid, compared with the clinical gold standard. The test revealed an increase of misfolded biomarkers as spectral shift of Amyloid beta band below threshold, thus diagnosing AD. The results suggest that even in pre-dementia stages, an increased concentration of misfolded Amyloid beta peptides can be detected in body fluids. Additionally, a preliminary proof-of-concept study indicated an amide I band shift below the marker band already in patients with mild cognitive impairment due to AD. The presented immuno-IR-sensor method represents a promising, simple, robust, and label-free diagnostic tool for CSF and blood analysis.

Klaus Gerwert, PhD, a professor of Biophysics and a senior author of study, said, “We do not merely select one single possible folding arrangement of the peptide; rather, we detect how all existing Amyloid beta secondary structures are distributed, in their healthy and in their pathological forms. Tests that analyze Amyloid beta peptide are already available with so-called enzyme-linked immunosorbent assays (ELISA). They identify the total concentration, percentage of forms of different length, as well as the concentration of individual conformations in body fluids; but they have not, as yet, provided information on the diagnostically relevant distribution of the secondary structures at once.” The study was published on February 1, 2016, in the journal Analytical Chemistry.

Related Links:

Ruhr-University Bochum
Bruker Optics GmbH 


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
New
CMV QC
Inactivated Cytomegalovirus High Control

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.