We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Pointe Scientific

Pointe Scientific Inc. develops, manufactures, and distributes over 400 clinical diagnostic products. The company’s p... read more Featured Products: More products

Download Mobile App




Testosterone Reference Ranges Vary Widely in Medical Laboratories

By LabMedica International staff writers
Posted on 30 Jun 2016
Print article
Image: The enzyme immunoassay for quantitative determination of testosterone concentration in human serum (Photo courtesy of Pointe Scientific).
Image: The enzyme immunoassay for quantitative determination of testosterone concentration in human serum (Photo courtesy of Pointe Scientific).
The evaluation and management of male hypogonadism should be based on symptoms and on serum testosterone levels and diagnostically this relies on accurate testing and reference values. This circumstance not only affects how clinicians determine treatment, but also whether insurers approve therapy for men with low testosterone levels.

Numerous variables affect testosterone level results, including the patient’s age and weight, physiological variation, timing of the specimen draw, presence of comorbid conditions, and medications, all of which makes defining a clinically relevant lower limit of “normal” challenging. In particular, as levels approach hypogonadal states, the accuracy becomes increasingly unreliable.

Urologists at the University of Kansas Medical Center (Kansas City, KS, USA) surveyed 120 academic and community hospital-associated laboratories in 47 states, 73% of which measured total testosterone on site using radioimmunoassay (RIA), enzyme immunoassay (EIA), and/or liquid chromatography-tandem mass spectrometry. Most (94.3%) used EIA via high-throughput analyzers.

The scientists found that total testosterone was measured in house at 73% of laboratories. At the remaining laboratories studies were sent to larger centralized reference facilities. The mean ± SD lower reference value of total testosterone was 231 ± 46 ng/dL (range 160 to 300) and the mean upper limit was 850 ± 141 ng/dL (range 726 to 1,130). Only 9% of laboratories where in-house total testosterone testing was performed created a reference range unique to their region. Others validated the instrument recommended reference values in a small number of internal test samples. For free testosterone 82% of laboratories sent testing to larger centralized reference laboratories where equilibrium dialysis and/or liquid chromatography with mass spectrometry was done. The remaining laboratories used published algorithms to calculate serum free testosterone.

The authors concluded that reference ranges for testosterone assays vary significantly among laboratories. The ranges are predominantly defined by limited population studies of men with unknown medical and reproductive histories. These poorly defined and variable reference values, especially the lower limit, affect how clinicians determine treatment. The study was published in the May 2016 issue of the Journal of Urology.

Related Links:
University of Kansas Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.