We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Variations in T-cells Identifies Susceptibility to Disease

By LabMedica International staff writers
Posted on 09 Dec 2016
Print article
Image: A colored scanning electron micrograph (SEM) of two T lymphocyte cells attached to a cancer cell (Photo courtesy of the National Institute of Health).
Image: A colored scanning electron micrograph (SEM) of two T lymphocyte cells attached to a cancer cell (Photo courtesy of the National Institute of Health).
Different cells of the human body differ greatly in structure and function; however, variation exists even among cells of one type and it is now suggested that the magnitude of such differences in T lymphocytes, or T cells, may indicate an individual's age and genetic predisposition to disease.

Learning more about so-called cell-to-cell expression variation, or CEV, may further illuminate how the immune system functions and one day serve as a diagnostic tool to help implement personalized medicine as CEV is a prevalent feature of even well-defined cell populations, but its functions, particularly at the organismal level, are not well understood.

Scientists at the US National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) used single-cell data obtained via high-dimensional flow cytometry of T cells as a model to introduce an analysis framework for quantifying CEV in primary cell populations and studying its functional associations in human cohorts. They used data from a previous study in which blood samples from a healthy, unrelated cohort of individuals were drawn at an initial visit, one week later, and at two months.

The scientists analyzed different subtypes of T cells, immune cells that facilitate, regulate and direct the destruction of infected or cancerous cells, in these samples by quantifying protein expression in single cells. While identifying cell-surface proteins is a standard method for categorizing T cells, the team also quantified cell-to-cell variation of protein levels and compared how such differences varied among individuals and in a single person over time.

The analyses of 840 CEV phenotypes spanning multiple baseline measurements of 14 proteins in 28 T cell subpopulations suggest that the quantitative extent of CEV can exhibit substantial subject-to-subject differences and yet remain stable within healthy individuals over months. Although the degree of cell-to-cell variation for many protein and cell combinations remained relatively constant in individuals over the two-month observation period, the magnitude of variation seemed to differ among individuals and could serve as unique personal markers.

Furthermore, certain variations were associated with age and carrying genes linked to disease. For example, individuals who carried a genetic variant associated with an increased risk for developing asthma were more likely to have more variable expression of a specific protein called CD38 among a subtype of T cells. The team plans to use the framework they developed to help identify potential CEV biomarkers for autoimmune diseases and other health problems. The study was published on November 15, 2016, in the journal Immunity.

Related Links:
US National Institute of Allergy and Infectious Diseases

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.