We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blood Biomarkers Diagnose Stroke Accurately

By LabMedica International staff writers
Posted on 23 Apr 2014
Print article
Image: The IX71- DSU Spinning Disk Confocal inverted microscope (Photo courtesy of Olympus America).
Image: The IX71- DSU Spinning Disk Confocal inverted microscope (Photo courtesy of Olympus America).
A new blood test is being developed that one day could rapidly confirm whether someone is having a stroke and what kind, will lead to faster diagnosis and treatment, which could mean the difference between life and death.

A device has been constructed that can process whole blood and isolate genetic material for two potential stroke biomarkers within minutes, and by identifying more biomarkers could aid in diagnosis as the device can analyze a total of four biomarkers at the same time.

Scientists at the Louisiana State University (Baton Rouge, LA, USA) designed and tested the performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of messenger ribonucleic acid (mRNA) isolated from these cells.

The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 μm wide and 80 μm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. Whole blood samples were obtained from anonymous healthy donors. To analyze the cells the scientists used flow cytometric analysis and evaluated carboxylic acid surface densities.

Cell characterization was performed by acquiring fluorescent images on an IX71-DSU Spinning Disk Confocal inverted microscope (Olympus America; Center Valley, PA, USA). Reverse transcription and polymerase chain reaction (PCR) of CD4+ T-cells and neutrophils was performed after they were isolated on a chip and lysed by infusing with lysis buffer. Reverse transcription (RT) was accomplished using a ProtoScript II First Strand cDNA Synthesis Kit (New England BioLabs; Ipswich, MA, USA).

The team demonstrated the affinity-based microfluidic system was capable of isolating highly pure subsets of leukocytes from whole blood. Processing 50 μL of whole blood in about three minutes provided sufficient genetic material for gene expression profiling. Special emphasis was placed on the fluid dynamics and design architecture of the device for T-cell and neutrophil isolation to obtain high purity leukocytes fractions using a single step. The isolation of two types of cells from whole blood was accomplished with purity of greater than 90%.

The expression of possible stroke biomarker genes from isolated T-cells and neutrophils, such as the calcium binding protein A9 (S100A9), the T cell receptor beta (TCRB), and the formyl peptide receptor 1 (FPR1), was evaluated using RT-PCR. The modification and isolation procedures can also be used to analyze other cell types as well where multiple subsets need to be investigated. The study was published online on March 20, 2014, in the journal Analytical Chemistry.

Related Links:

Louisiana State University
Olympus America
New England BioLabs


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Cancer Mutation Profiling Liquid Kit
OncoScreen Plus

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.