We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Portable Device Assays Genetic Detection of Pathogens

By LabMedica International staff writers
Posted on 22 May 2013
Print article
Image: Mycobacterium tuberculosis (Photo courtesy of TB Europe Coalition).
Image: Mycobacterium tuberculosis (Photo courtesy of TB Europe Coalition).
A handheld diagnostic device has been developed and adapted to rapidly diagnose tuberculosis (TB) and other important infectious bacteria.

The portable device combines microfluidic technology with nuclear magnetic resonance (NMR) to diagnose these communicable diseases, and also determine the presence of antibiotic-resistant bacterial strains.

The device was developed by scientists at the Massachusetts General Hospital (Boston MA, USA), and combines a platform for the detection of nucleic acids based on a magnetic barcoding strategy. Polymerase chain reaction (PCR)-amplified mycobacterial genes are sequence-specifically captured on microspheres, labeled by magnetic nanoprobes and detected by nuclear magnetic resonance.

Tests of the device on samples from patients known to have TB and from healthy controls identified all positive samples with no false positives in less than three hours. Existing diagnostic procedures can take weeks to provide results and can miss up to 40% of infected patients. Results were even stronger for patients infected with both TB and human immunodeficiency virus (HIV), probably because infection with both pathogens leads to high levels of the TB bacteria, and specialized nucleic acid probes developed by the team were able to distinguish treatment-resistant bacterial strains.

The system detected DNA from the Mycobacterium tuberculosis bacteria in small sputum samples. After DNA is extracted from the sample, any of the target sequence that is present is amplified using a standard procedure, then captured by polymer beads containing complementary nucleic acid sequences, and labeled with magnetic nanoparticles with sequences that bind to other portions of the target DNA. The miniature NMR coil incorporated into the device, which is about the size of a standard laboratory slide, detects any TB bacterial DNA present in the sample.

The investigators also developed both a universal nucleic acid probe that detects a ribosomal ribonucleic acid (rRNA) region common to many bacterial species and a set of probes that target sequences specific to 13 clinically important pathogens, including Streptococcus pneumoniae, Escherichia coli, and methicillin-resistant Staphylococcus aureus (MRSA). The device was sensitive enough to detect as few as one or two bacteria in a 10 mL blood sample and to accurately estimate bacterial load. Testing the system on blood samples from patients with known infections accurately identified the particular bacterial species in less than two hours and also detected two species that had not been identified with standard culture techniques.

Ralph Weissleder, MD, PhD, cosenior author of the study said, “The magnetic interactions that pathogen detection is based on are very reliable, regardless of the quality of the sample, meaning that extensive purification, which would be difficult in resource-limited setting, is not necessary. The ability to diagnose TB in a matter of hours could allow testing and treatment decisions within the same clinic visit, which can be crucial to controlling the spread of TB in developing countries." The study was published on April 23, 2013, in the journal Nature Communications.

Related Links:
Massachusetts General Hospital

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Human Papillomavirus Multiplex Assay
Anyplex Ⅱ HPV28 Detection
New
Control Material
Blood Culture Identification Control Panel

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: A sample of the TETRIS diagnostic kit (Photo courtesy of iHealthtech)

First-Of-Its-Kind Technology Maps Out Diverse Protein Interactions in Cells Using DNA Barcodes

Proteins play a vital role in almost all life processes, and understanding how these essential molecules interact is crucial in both biology and medicine. Protein interactions drive critical functions... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.