We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Nanotechnology Accurately Predicts Prostate Cancer and Prognosis

By LabMedica International staff writers
Posted on 31 Mar 2015
Print article
Image: Partial wave spectroscopy (PWS) is able to detect subtle changes in cells that indicate cancer growth in a different area of the body, even when those same cells appear normal under a microscope (Photo courtesy of North Western University).
Image: Partial wave spectroscopy (PWS) is able to detect subtle changes in cells that indicate cancer growth in a different area of the body, even when those same cells appear normal under a microscope (Photo courtesy of North Western University).
The emerging field of nanocytology, using partial wave spectroscopic microscopy, could help men make better decisions about whether or not to undergo aggressive prostate cancer treatments.

The prostate-specific antigen (PSA) test was once the recommended screening tool for detecting prostate cancer (PCa), but there is now disagreement over the use of this test because it cannot predict which men with elevated PSA levels will actually develop an aggressive form of the disease.

Scientists at the Northwestern University (Evanston, IL, USA) and their colleagues at the Boston University Medical Center (Boston, MA, USA) studied patients who underwent their first surveillance biopsy 6 to12 months after enrollment. Progression was defined as any change in criteria 3, 4, or 5. Thirty-eight patients were randomly chosen from the database of patients adjudicated as progressors and non-progressors by the chief study urologist. Transrectal biopsies were obtained under three-dimensional ultrasound guidance. Hematoxylin and eosin (H&E) sections were reviewed by the study pathologist to direct the partial wave spectroscopic microscopy (PWS) analysis towards non-malignant tissue.

The teams described PWS marker disorder strength (Ld) as proportional to the mean and standard deviation of the spatial variations of the macromolecular density of the fundamental cellular building blocks (proteins, nucleic acids, lipids). Thus, Ld, colloquially, can be described as measuring the “clumpiness” of nanoscale structure. The scientists demonstrated that PWS is sensitive to structures from 20 to 200 nm through the spectral analysis of the interference spectra of light reflected from intracellular refractive index variations within microscopic spatiotemporal coherence volume, as opposed to typical light microscopy whose resolution is restricted 200 to 500 nm, the diffraction limit of light.

There was a profound increase in nano-architectural disorder between progressors and non-progressors. The Ld from future progressors was dramatically increased when compared to future non-progressors: 1 ± 0.065 versus 1.30 ± 0.0614, respectively. The area under the receiver operator characteristic curve (AUC) was 0.79, yielding a sensitivity of 88% and specificity of 72% for discriminating between progressors and non-progressors. This was not confounded by demographic factors such as age, smoking status, race, obesity, thus supporting the robustness of the approach.

The authors concluded that nano-architectural alterations occur in prostate cancer field carcinogenesis and can be exploited to predict prognosis of early stage PCa. This approach has promise in addressing the clinically vexing dilemma of management of low grade Gleason score 6 PCa and may provide a paradigm for dealing with the larger issue of cancer overdiagnosis. The study was published on February 23, 2015, in the journal Public Library of Science ONE.

Related Links:

Northwestern University 
Boston University Medical Center 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.