We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Approximates Human Performance in Breast Cancer Diagnosis

By LabMedica International staff writers
Posted on 25 Jul 2016
Print article
Image: The framework of cancer metastases detection (Photo courtesy of Andrew Beck / BIDMC).
Image: The framework of cancer metastases detection (Photo courtesy of Andrew Beck / BIDMC).
Artificial intelligence (AI) methods that train computers to interpret pathology images could make pathologic diagnoses more accurate.

Researchers at Beth Israel Deaconess Medical Center (BIDMC; Boston, MA, USA) and Harvard Medical School (HMS; Boston, MA, USA) have developed a machine-learning algorithm that can be used for a range of applications, including speech and image recognition. The algorithm teaches machines to interpret complex patterns and structures observed in real-life data by building multi-layer artificial neural networks, in a process which is thought to show similarities with the learning process occurring in the neurons of the neocortex, the region where thinking occurs.

The researchers trained the computer to distinguish between cancerous tumor regions and normal regions, based on a deep multilayer convolutional network that began with hundreds of training slides for which a pathologist has labeled regions of cancer and regions of normal cells. They then extracted millions of small training examples and used deep learning to build a computational model to classify them. The researchers then identified the specific training examples for which the computer was prone to making mistakes, and re-trained it using greater numbers of the more difficult training examples, gradually improving the computer’s performance.

The computers performance was tested in a competition at the 2016 International Symposium of Biomedical Imaging (ISBI), held during April in Prague (Czech Republic). The competition involved examining images of lymph nodes to decide whether or not they contained breast cancer. The computer algorithm identified correctly 92% percent of the time, nearly matching the 96% success rate of a human pathologist. The algorithm placed first in two separate categories, competing against private companies and academic research institutions from around the world. A technical report describing the approach was posted on June 18, 2016, on the arXiv.org repository.

“Peering into the microscope to sift through millions of normal cells to identify just a few malignant cells can prove extremely laborious using conventional methods. We thought this was a task that the computer could be quite good at,” said pathologist Andrew Beck, MD, PhD, director of bioinformatics at the Cancer Research Institute at BIDMC. “But the truly exciting thing was when we combined the pathologist’s analysis with our automated computational diagnostic method, the result improved to 99.5% accuracy. Combining these two methods yielded a major reduction in errors.”

“When we started this challenge, we expected some interesting results. The fact that computers had almost comparable performance to humans is way beyond what I had anticipated,” said Jeroen van der Laak, PhD, of Radboud University Medical Center (The Netherlands), an organizer for the competition. “It is a clear indication that artificial intelligence is going to shape the way we deal with histopathological images in the years to come.”

Related Links:
Beth Israel Deaconess Medical Center
Harvard Medical School
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.