We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




First Ever Technique Identifies Single Cancer Cells in Blood for Targeted Treatments

By LabMedica International staff writers
Posted on 04 Apr 2024
Print article
Image: A new technique has demonstrated the ability to identify single cancer cells in blood for the first time (Photo courtesy of crystal light/Shutterstock)
Image: A new technique has demonstrated the ability to identify single cancer cells in blood for the first time (Photo courtesy of crystal light/Shutterstock)

The global medical community is increasingly recognizing liquid biopsy as a transformative approach to enhancing cancer patient care. This innovative diagnostic method involves detecting and analyzing circulating tumor DNA, circulating tumor RNA (including microRNA, long non-coding RNA, and messenger RNA), DNA or RNA from exosomes, and circulating tumor cells (CTCs) in the bloodstream. Originating from primary tumors or metastases, CTCs are cancer cells that can be found as individual cells or as clusters in peripheral blood. Despite advancements, accurately quantifying CTCs remains challenging, creating the need for a reliable method that can universally identify CTCs from various tumors, swiftly, efficiently, and with minimal disruption to patient care. A pioneering study has now demonstrated a technique that can identify single cancer cells in a blood sample, opening doors to more customized and targeted cancer treatments.

A team of academics including researchers from Keele University (Keele, UK) employed Fourier Transform Infrared (FTIR) microspectroscopy, a technique for separating cells based on their biochemical composition using infrared light. For the first time, combining FTIR microspectroscopy with a machine learning algorithm led to the successful identification of a single lung cancer cell in a blood sample. This breakthrough supports the move towards personalized medicine, which significantly enhances patient treatment by customizing therapies to match individual profiles and cancer types.

By leveraging this technique to detect individual tumor cells in the bloodstream, it becomes possible to more accurately evaluate patients at various stages of cancer care, from initial diagnosis and staging to monitoring treatment responses and ongoing surveillance. This advancement could refine the personalized medicine strategy, offering a more precise alternative to current cancer cell detection methods. Following this initial success, the research team has received approval to extend their study to include blood samples from patients with a variety of cancers, beyond lung cancer, aiming to validate the effectiveness of this technique across different cancer types.

“Identifying cancer cells in blood using this technique could be a game-changer in the management of patients with cancer,” said Josep Sulé-Suso, Professor of Oncology at Keele University.

Related Links:
Keele University

Gold Member
Rickettsia Conorii Assay
RICKETTSIA CONORII ELISA
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Whole Blood-Based Controls
Lyphochek Hemoglobin A1C Linearity Set
New
Prolactin Test
Chorus PRL

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: New Alzheimer’s studies have revealed disease biology, risk for progression, and potential for a novel blood test (Photo courtesy of Adobe Stock)

Novel Blood Test Could Reveal Alzheimer’s Disease Biology and Risk for Progression

The inability to diagnose Alzheimer’s disease, the most prevalent form of dementia in the elderly, at an early stage of molecular pathology is considered a key reason why treatments fail in clinical trials.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.