Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Noninvasive Cancer Diagnosis with a Contact Lens-based System that Collects and Analyses Tear Exosomes

By LabMedica International staff writers
Posted on 12 Aug 2022

A novel contact lens-based system for noninvasive cancer screening and diagnosis concentrates and analyzes exosomes shed by cancer cells into tears.

Exosomes are formed within most cells and secreted into many bodily fluids, such as plasma, saliva, urine, and tears. They are lipid-bilayer-enclosed structures, with sizes ranging from 30 to 5,000 nanometers. In the past decade, exosomes have emerged as important mediators of cell communication because they serve as vehicles for the intercellular transmission of biological signals (proteins or nucleic acids) capable of altering cell function and physiology. In addition, exosomes related to cancers have been reported to exist in tears.

The use of exosomes for clinical purposes has been hindered by difficulty in isolating them in sufficient quantity and purity. Current methods involve tedious and time-consuming ultracentrifuge and density gradient techniques, lasting at least ten hours to complete.

To overcome this shortcoming, investigators at Terasaki Institute for Biomedical Innovation (Los Angeles, CA, USA) developed a poly(2-hydroxyethyl methacrylate) contact lens embedded with antibody-conjugated signaling microchambers (ACSM-PCL) capable of detecting tear exosomes. Microchamber surfaces were chemically modified to activate them for antibody binding, and procedures were optimized for binding a capture antibody to the ACSM-CL microchambers and a different (positive control) detection antibody onto gold nanoparticles that could be visualized spectroscopically.

Results revealed that the ACSM-PCL could detect exosomes in the pH range of 6.5–7.4 (similar to the pH of human tears). In particular, the ACSM-PCL could detect exosomes in various solutions, including regular buffer, cell culture media from various cell lines, and human tears. Furthermore, the ACSM-PCL could differentiate expression of exosome surface proteins thought to be cancer biomarkers.

The ACSM-CL was tested against exosomes secreted into supernatants from ten different tissue and cancer cell lines. The ability to capture and detect exosomes was validated by the spectroscopic shifts observed in all the test samples, in comparison with the negative controls. Similar results were obtained when the ACSM-CL was tested against ten different tear samples collected from volunteers.

“Exosomes are a rich source of markers and biomolecules which can be targeted for several biomedical applications,” said senior author Dr. Ali Khademhosseini, director and CEO of Terasaki Institute for Biomedical Innovation. “The methodology that our team has developed greatly facilitates our ability to tap into this source.”

The contact lens system for capture of exosomes from tears was described in the August 10, 2022, online edition of the journal Advanced Functional Materials.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.