We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

By LabMedica International staff writers
Posted on 10 Feb 2025
Print article
Image: Personalized cancer treatment using 3D bioprinting technology (Photo courtesy of POSTECH)
Image: Personalized cancer treatment using 3D bioprinting technology (Photo courtesy of POSTECH)

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing side effects and improving treatment efficiency. Current methods, such as gene panel-based tests and patient-derived xenograft (PDX) models, have limitations in their applicability to certain patients, have challenges in predicting drug effects, and require significant time and costs to develop. Now, researchers have successfully created a gastric cancer model using 3D bioprinting technology and patient-derived cancer tissue fragments. This groundbreaking model preserves the characteristics of actual patient tissues and is expected to rapidly assess and predict individual patient drug responses.

In collaborative research by Pohang University of Science & Technology (POSTECH, Gyeongbuk, Korea) and The Jackson Laboratory for Genomic Medicine (Farmington, CT, USA), scientists have developed an in vitro gastric cancer model by utilizing 3D bioprinting technology and tissue-specific bioink that incorporated patient-derived tissue fragments. Notably, they encapsulated cancer tissues within a stomach-derived decellularized extracellular matrix (dECM) hydrogel, which artificially facilitated cell-matrix interactions. By co-culturing these tissues with human gastric fibroblasts, they successfully replicated cancer cell-stroma interactions, thereby recreating the in vivo tumor microenvironment in vitro.

Published in the international journal Advanced Science, the research shows that this model preserved the distinct characteristics of gastric tissues from individual patients by replicating both cell-stroma and cell-matrix interactions. It demonstrated high specificity in predicting the patient's anticancer drug responses and prognosis. Additionally, the model's gene profiles related to cancer development, progression, and drug response closely mirrored those of patient tissues, outperforming conventional PDX models. The rapid fabrication process of this model through bioprinting also allows drug evaluation within two weeks of tumor tissue extraction from the patient. This efficient platform is expected to make a significant contribution to the development of personalized cancer treatments.

“By reproducing cancer cell-stroma and cell-matrix interactions, this model enhances the accuracy of drug response predictions and reduces unnecessary drug administration to non-responsive patients,” said Professor Charles Lee from The Jackson Laboratory for Genomic Medicine, who led the study.

“This is a critical preclinical platform not only for developing patient-specific treatments but also for validating new anticancer drugs and combination therapies,” added Professor Jinah Jang of POSTECH.

Related Links:
POSTECH 
The Jackson Laboratory for Genomic Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Flu Test
Influenza A/B Virus Detection Kit
New
Human Cytomegalovirus Test
HCMV Real Time PCR Kit

Print article

Channels

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: The OmicsFootPrint AI tool could open doors to new discoveries (Photo courtesy of Mayo Clinic)

Revolutionary AI Tool Transforms Disease Visualization

Genes serve as the body's blueprint, while proteins execute the instructions within those blueprints to maintain cell function. Occasionally, alterations in these instructions—known as mutations—can interfere... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.