We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma

By LabMedica International staff writers
Posted on 28 Oct 2019
Print article
Image: A micrograph of a diffuse large B cell lymphoma (DLBCL) (Photo courtesy of Wikimedia Commons).
Image: A micrograph of a diffuse large B cell lymphoma (DLBCL) (Photo courtesy of Wikimedia Commons).
Cancer researchers developed a 29 gene–based weighted prognostic score for predicting event-free survival and overall survival of patients suffering from diffuse large B-cell lymphoma (DLBCL).

DLBCL is the most common type of non-Hodgkin lymphoma, an aggressive cancer that begins in certain immune system cells and can occur almost anywhere in the body. This cancer occurs primarily in older individuals, with a median age of diagnosis at approximately 70 years of age, although it can also occur in children and young adults in rare cases. An elevated level of circulating cell-free DNA (cfDNA) has been associated with tumor mass and poor prognosis in DLBCL, but the tumor-specific molecular alterations in cfDNA with prognostic significance have remained unclear.

To help clarify this issue, investigators at the University of Chicago Medical Center (IL, USA) studied the association between 5-hydroxymethylcytosines (5hmC), a mark of active demethylation and gene activation, in cfDNA from blood plasma and prognosis in newly diagnosed DLBCL patients.

The investigators emplyed the 5hmC-Seal, a highly sensitive chemical labeling–based sequencing technology, to profile genome-wide 5hmC in cfDNA from blood plasma of 48 patients with newly diagnosed DLBCL. This technology used the T4 bacteriophage beta-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group could be chemically modified with biotin for detection, affinity enrichment, and sequencing of 5-hmC–containing DNA fragments. The 5hmC-Seal technology was shown to be a robust profiling approach for enriching and quantifying 5hmC-modified DNA fragments with as little as one to two nanograms of cfDNA in less than five milliliters of plasma.

The investigators tested the hypothesis that 5hmC profiles in cfDNA at the time of diagnosis reflected the clinical characteristics of DLBCL and were associated with survival. Results obtained during the study enabled the development of a 29 gene–based weighted prognostic score for predicting event-free survival and overall survival.

“Our findings, if validated in a larger independent patient population, could impact the cure rate for DLBCL,” said first author Dr. Brian Chiu, associate professor of epidemiology at the University of Chicago Medical Center. “By identifying those patients who are at high-risk of treatment failure, we can see who may benefit from individualized clinical management or earlier treatment with novel or targeted therapies.”

The study was published in the October 8, 2019, online edition of the journal Blood Advances.

Related Links:
University of Chicago Medical Center

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.