We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Panel of Genetic Loci Accurately Predicts Risk of Developing Gout

By LabMedica International staff writers
Posted on 14 Oct 2019
Print article
Image: Spiked rods of monosodium urate crystals photographed under polarized light from a synovial fluid sample. Formation of monosodium urate crystals in the joints is associated with gout (Photo courtesy of Wikimedia Commons).
Image: Spiked rods of monosodium urate crystals photographed under polarized light from a synovial fluid sample. Formation of monosodium urate crystals in the joints is associated with gout (Photo courtesy of Wikimedia Commons).
A large GWAS (genome-wide association study) highlighted genetic loci associated with the metabolic regulation of serum levels of uric acid (urate) and identified a panel of 183 loci linked to the risk of developing gout.

Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown of purine nucleotides, and it is a normal component of urine. High blood concentrations of uric acid can lead to gout and are associated with other medical conditions, including diabetes and the formation of ammonium acid urate kidney stones.

As part of a major effort to develop screening tests for gout risk as well as potential new treatments for the disorder, investigators at Johns Hopkins University (Baltimore, MD, USA) performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals participating in 74 studies. The experimental cohort included 288,649 people of European ancestry, 125,725 people of East Asian ancestry, 33,671 African Americans, 9,037 South Asians, and 608 Hispanics.

Results of the analysis identified 183 loci where DNA variations were strongly linked to high serum urate levels, of which only 36 had been found in prior studies. The investigators developed a risk scoring system from the panel of 183 loci, which they used to assess the gout risk in an independent sample of 334,880 people from a medical research database. They found that the panel of 183 loci accurately stratified the participants according to their risk of developing gout. The prevalence of gout in the 3.5% of individuals in the three highest risk score categories was more than three times greater than that of those in the most common risk score category.

Further mining of the data enabled the investigators to map the 183 loci to specific genes. Many of these genes normally were active in the kidneys, urinary tract, and liver, which were expected considering the roles of the kidneys and liver in regulating serum urate levels.

“These genetic variants we highlighted can now be studied further to identify how they contribute to high urate levels, and to determine whether they would be good targets for treating gout,” said first author Dr. Adrienne Tin, assistant scientist in epidemiology at Johns Hopkins University. “These findings may be useful in developing screening tests for gout risk so that patients who are at risk can adopt dietary changes to avoid developing the condition. The urate-related gene variants and biological pathways uncovered here also should be useful in the search for new ways to treat gout.”

The study was published in the October 2, 2019, issue of the journal Nature Genetics.

Related Links:
Johns Hopkins University

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Electroporation System
Gibco CTS Xenon
New
Urine Drug Test
Instant-view Buprenorphine Urine Drug Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The kit includes a container with a film, a compact optical device for attaching a smartphone, and a diagnostic app (Photo courtesy of KIST)

Urine-Based Bladder Cancer Diagnostic Kit to Reduce Need for Unnecessary Cystoscopies

Bladder cancer has a high cure rate of over 90% when detected early, but it is characterized by a recurrence rate of 70%, which requires continuous monitoring. Late-stage detection often results in major... Read more

Microbiology

view channel
Image: The QIAstat-Dx mini gastrointestinal panel has secured U.S. clearance to support year-round outpatient care (Photo courtesy of QIAGEN)

Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions

Acute infectious gastroenteritis is a major cause of outpatient visits and hospitalizations in the U.S., with over 179 million cases estimated annually. Now, a new gastrointestinal panel designed to provide... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.