Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Real-Time PCR Detects Malaria in Children

By LabMedica International staff writers
Posted on 28 Jun 2012
Quantitative real-time polymerase chain reaction PCR (qPCR) on blood samples is more sensitive than thick film microscopy for malaria diagnosis.

The molecular method can be used to determine the parasitemia of African children infected with Plasmodium falciparum in both plasma and whole blood samples and has been compared with microscopic techniques.

Scientists at the University of Oxford (Headington, UK) working with an international team conducted a double-blind randomized placebo-controlled trial in Southern Mozambique from September 2005 to March 2009. Study participants were followed up until age 24 months. Blood slides were read to quantify parasitemia. Plasma samples were stored at -80 °C for three to four years before extraction of DNA. Dried bloodspots collected onto filter paper were stored for the same period at 4 °C with silica gel.

A total of 548 samples were analyzed by qPCR on DNA extracted from whole blood on filter paper (qPCR-blood) and plasma (qPCR-plasma). Of these, 143 (26%) were found to be P. falciparum positive by qPCR-blood, while the qPCR-plasma method detected 37 (7%) as positive. Agreement between both techniques was 78.1%. Parasite infection detected by microscopy showed greater agreement with detection by qPCR-plasma (96.85%) than did qPCR-blood (69.7%). However, qPCR-blood detected parasitemia in approximately 3.5 fold more samples than qPCR-plasma or thick film microscopy.

The authors concluded that qPCR using parasite DNA from whole blood is more sensitive to detect submicroscopic levels of parasitemia than using parasite DNA from plasma. However, the data demonstrated that the performance of qPCR on plasma samples is similar to the performance of microscopy, suggesting that qPCR on plasma can be used as a substitute to microscopy when performing retrospective studies with limited material and when blood smears are unavailable. This approach, together with developments in the use of loop-mediated isothermal amplification may assist in making molecular detection of malaria infection in the field more common. The study was published on June 15, 2012, in the Malaria Journal.

Related Links:
University of Oxford


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.