We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Two Genes Together Drive Aggressive Prostate Cancer

By LabMedica International staff writers
Posted on 28 May 2014
Two genes work together to drive the most lethal forms of prostate cancer, and these findings could lead to a diagnostic test for identifying those tumors envisaged to become aggressive and to the development of novel combination therapy for the disease.

An approach has been investigated for accurate cross-species analysis of conserved cancer pathways based on reverse engineering of genome-wide regulatory networks, known as interactomes, a whole set of molecular interactions in a particular cell, representing both human and murine prostate cancer.

A team of scientists led by those at Columbia University Medical Center (CUMC; New York, NY, USA) assembled genome-wide regulatory networks (interactomes) for human and mouse prostate cancer from expression profiles of human tumors and of genetically engineered mouse models, respectively. Gene silencing of two genes as well as forced expression of one of the genes were done using lentiviral small hairpin RNAs (shRNAs, Open Biosystems; Pittsburgh, PA, USA) or the expression vectors from the CCSB Human ORFeome Library from the same company. Analysis of protein expression of two genes was performed using a high-density tissue microarray analyses (TMA) and a metastasis TMA, and slides were scanned using an iScan microarray scanner (Illumina; San Diego, CA, USA)

The team identified the gene for the Forkhead box M1 protein (FOXM) and the gene encoding for the centromere protein F (CENPF) as a synergistic driver pair in aggressive prostate cancer in both mice and humans, as these regulators jointly control genetic programs associated with the most prominent tumor hallmarks in both species. They analyzed prostate cancers from a group of more than 900 patients who had undergone prostate removal surgery. This analysis showed a striking correlation between the co-expression of FOXM1 and CENPF and the poorest disease outcome. In sharp contrast, expression of either gene alone did not correlate with aggressive disease. In addition, tumors in which neither gene was aberrantly expressed had the best prognosis.

Michael M. Shen, PhD, professor of medical sciences and coauthor of the study, said, “This is just a first step toward a deeper understanding of the genetics of cancer. The tools and approaches developed in this study may have broad utility in studying prostate cancer; cross-species computational analyses also could be used to identify the causes of other cancers, as well as that of other complex diseases.” The study was published on May 12, 2014, in the journal Cancer Cell.

Related Links:

Columbia University Medical Center
Open Biosystems



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.