We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




LAMP Method Detects Malarial Parasites Using Microwave Irradiation

By LabMedica International staff writers
Posted on 10 Dec 2014
A rapid and reliable nucleic acid extraction procedure from human blood and malarial parasites using microwave irradiation as a promising platform has been described.

Although microscopy of blood smears is still considered the gold standard for diagnosing malaria infections, microscopy is frequently unable to detect low-density infections and requires skilled expertise.

Scientists at the University of Tübingen (Germany) working with colleague in the Republic of Congo collected venous blood samples either into 5 mL heparinized tubes or by finger prick with blood stored on sterile Whatman filter paper at admission to the Albert Schweitzer Hospital (Lambaréné, Gabon) from patients suffering from severe Plasmodium falciparum infections.

DNA was extracted from whole blood samples as well as from the cultured parasites of the dilution series using the conventional QIAamp DNA mini blood kit based extraction procedure (Qiagen; Hilden, Germany). A tailored loop mediated isothermal amplification (LAMP) methodology was used that utilized hydroxynaphthol blue (HNB) and Bacillus stearothermophilus (Bst 2.0) DNA polymerases for the molecular detection of malarial parasites. The LAMP assay reactions were performed using two heat blocks (Block Thermostat BT 200, Kleinfeld Labortechnik, Gehrden, Germany) and preheated to 60 °C for DNA amplification for 45 minutes, and enzyme inactivation for two minutes at 80 °C.

Following microwave irradiation for DNA isolation, conventional polymerase chain reaction (PCR) assays were able to detect up to five malaria parasites/µL. The LAMP methodology was capable to detect as low as one P. falciparum parasite/µL after DNA extraction by microwave irradiation. A turnover time of 45 minutes from nucleic acid extraction to final visual read-out was achieved. The amplicon was visualized through a distinct color change and subsequently confirmed by gel electrophoresis. A change from violet to light sky blue was considered a positive result of amplification. If the reaction remained violet, the sample was assessed as being negative.

The authors concluded that the LAMP procedure offers a cheap, simple and fast method of molecular detection of malaria parasites. This test can easily be performed in basic laboratories. The methodology has been validated as a proof of concept and has specifically been developed for use at low-resource settings. Such rapid molecular diagnostic tests may aid health providers to make timely therapeutic interventions in malaria endemic regions. The study was published on November 24, 2014, in the Malaria Journal.

Related Links:
University of Tübingen
Albert Schweitzer Hospital
Kleinfeld Labortechnik



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.