We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Black Grain Eumycetoma Causative Agents Identified by Molecular Method

By LabMedica International staff writers
Posted on 17 Dec 2014
A rapid, simple, and highly efficient molecular based method for identification of the causative agents of black grain eumycetoma has been introduced, aiming to improve diagnostics in endemic areas.

Accurate identification of mycetoma causative agent is a priority for treatment; however, current identification tools are far from being satisfactory for both reliable diagnosis and epidemiological investigations and the currently available molecular methods based on DNA sequencing though specific are extremely expensive.

Scientists at the University of Amsterdam (The Netherlands) collaborating with an international team, analyzed 62 isolates belonging to eight species causing black grain mycetoma: 32 Madurella mycetomatis, 1 M. fahalii , 3 M. pseudomycetomatis, 2 M. tropicana, 10 Trematosphaeria grisea, 6 Falciformispora senegalensis, 2 F. tompkinsii, and 6 Medicopsis romeroi. All strains were identified down to species level by sequencing of the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region.

Rolling circle amplification (RCA) is a powerful diagnostic method based on detection of specific nucleic-acid sequences and enzymatic amplification of circularized oligonucleotide probes under isothermal conditions. The probes are linear oligonucleotides that contain two target-complementary sequences at their ends joined by linkers. The ends of the probe hybridize to the complementary target in juxtaposition and then ligate which allows the circularization of the probe. The circular structured molecule then amplifies with DNA polymerase that has strand displacement and progressive DNA synthesis activity resulting in series of repeats of the original circular template. After RCA, accumulated double stranded DNA was detected with an ultra violet (UV) transilluminator (Vilber Lourmat; Marne-la-Vallée, France).

RCA was used to identify 62 strains belonging to eight species causing human eumycetoma. Since black grain eumycetoma species are known to be phylogenetically distant, it was easy to find unique sites for their identification. The ribosomal ITS region was sufficient for identification of all species and showed no intraspecific variability within a set of 100 M. mycetomatis strains in the collection. With the isothermal RCA assay, the 62 isolates were successfully identified with 100% specificity and no cross reactivity or false results.

The authors concluded that RCA is extremely useful for specific identification of agents of mycetoma. Performance and rapid turnaround time features make the RCA suitable for quick and reliable diagnosis, which is an enormous improvement compared to the current phenotypic identification of mostly non-sporulating cultures. Future application of RCA could be the detection of agents DNA directly from clinical samples without requirement of culturing. The study was published on December 4, 2014, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

University of Amsterdam 
Vilber Lourmat 



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Respiratory QC Panel
Assayed Respiratory Control Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.