We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Capillary Zone Electrophoresis Developed for Rapid Determination of Thalassemia

By LabMedica International staff writers
Posted on 10 Jun 2015
A capillary zone electrophoresis (CZE) method has been developed for human globin determination in the diagnosis of thalassemia and hemoglobin variants as analysis of globin chains is an important aspect of thalassemia diagnostics.

Thalassemia is an inherited autosomal recessive blood disorder characterized by the underproduction of globin chains as a consequence of globin gene defects, resulting in malfunctioning red blood cells and oxygen transport.

Medical scientists at the Southern Medical University (Guangzhou, China) evaluated an assay on blood samples obtained from anticoagulated whole blood from a total of 310 clinical samples consisting of 58 normal, 107 α-thalassemia silent/trait, 42 β-thalassemia carriers and 63 β-thalassemia major and β-thalassemia intermedia (β -TM/TI), and 40 others with various hemoglobinopathies.

Hemoglobin analysis was carried out using the high-performance liquid chromatography (HPLC, Variant II, Bio-Rad Laboratories; Hercules, CA, USA). Capillary zone electrophoresis (CZE) was performed using a P/ACE MDQ Capillary Electrophoresis System (Beckman Coulter Inc.; Fullerton, CA, USA) equipped with a 70 cm × 50 μm uncoated fused-silica capillary at 25 °C.

Distinct globin peaks were resolved in 17 minutes and coefficients of variation (CV) for migration time and areas ranged from 0.37% to 1.69% and 0.46% to 6.71%, respectively. Receiver operating characteristic (ROC) curve analysis of the α/β area ratios gave 100% sensitivity and specificity for indicating β-TI/TM, and 100% sensitivity and 97.4% specificity for Hb H disease. Hemoglobin G-Honolulu (Hb G-Honolulu) and Hb Westmead (Hb WS) were successfully detected using this CZE method.

The authors concluded that they had successfully developed a simple, rapid, high-resolution CZE method for the separation of globin chains using highly acidic buffer and uncoated capillaries. Using this method, α-, β- and γ-chains, and αWS and αG Honolulu  chains were successfully separated within 17 minutes, indicating suitability for routine clinical applications. The migration times and globin chain peak areas were highly reproducible; although not as rapid as existing high-throughput HPLC techniques. This CZE method may provide an attractive complementary and/or confirmatory approach. The study was published in the June 2015 issue of the journal Blood Cells Molecules and Diseases.

Related Links:

Southern Medical University 
Bio-Rad Laboratories  
Beckman Coulter Inc.



Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Vaginitis Test
Allplex Vaginitis Screening Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.