We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Circulating Immune Cells Act As Idiopathic Pulmonary Fibrosis Biomarkers

By LabMedica International staff writers
Posted on 14 Sep 2016
Patients with fibrotic lung diseases, such as idiopathic pulmonary fibrosis (IPF), show progressive worsening of lung function with increased shortness of breath and dry cough.

To-date, this process is irreversible, which is why scientists are searching for novel biomarkers or indicators, which enable earlier diagnosis of this disease, with the aim to better interfere with disease progression.

Scientists at the Helmholtz Zentrum München (Munich, Germany) prospectively included 170 patients in the analysis, divided into 69 IPF, 56 non-IPF interstitial lung disease (ILD), 17 with hypersensitivity pneumonitis, 27 with nonspecific interstitial pneumonia, 12 with connective tissue disease- (ILD), and 23 chronic obstructive pulmonary disease (COPD) patients, as well as 22 healthy controls.

For immunophenotyping, the team collected fresh venous blood in EDTA-coated vacutainer tubes. Briefly, whole blood or peripheral blood mononuclear cell (PBMC) buffy coats were used for flow cytometry detection of myeloid-derived suppressor cells (MDSC) and lymphocyte subtypes. Erythrocytes were lysed with a Coulter Q-Prep working station (Beckman Coulter, Brea, CA, USA). Data acquisition was performed in a BD LSRII flow cytometer or a BD fluorescence-activated cell sorter (FACS) ARIA II (Becton Dickinson, Heidelberg, Germany) if cells were sorted. The T-cell suppression assay and MDSC co-cultures were also performed.

Peripheral blood mononuclear cell (PBMC) Messenger ribonucleic acid (mRNA) levels were analyzed by real time polymerase chain reaction (qRT-PCR). The investigators detected increased MDSC in IPF and non-IPF ILD compared with controls (30.99 ± 15.61% versus 18.96 ± 8.17%). Circulating MDSC inversely correlated with maximum vital capacity in IPF, but not in COPD or non-IPF ILD. MDSC suppressed autologous T-cells. The mRNA levels of co-stimulatory T-cell signals were significantly downregulated in IPF PBMC. Importantly, CD33+CD11b+ cells, suggestive of MDSC, were detected in fibrotic niches of IPF lungs.

Oliver Eickelberg, MD, a professor and lead investigator said, “We were able to show that MDSC are primarily found in fibrotic niches of IPF lungs characterized by increased interstitial tissue and scarring, that is, in regions where the disease is very pronounced, and as a next step, we seek to investigate whether the presence of MDSC can serve as a biomarker to detect IPF and to determine how pronounced it is. Controlling accumulation or expansion of MDSC or blocking their suppressive functions may represent a promising treatment options for patients with IPF. ” The study was published on September 1, 2016, in the European Respiratory Journal.

Related Links:
Helmholtz Zentrum München
Beckman Coulter
Becton Dickinson

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Immunofluorescence Analyzer
MPQuanti
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.