We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Samples Reveal Gene Expression Pattern Diagnostic for Lung Cancer

By LabMedica International staff writers
Posted on 08 Mar 2017
Differences in gene expression that can be detected in nasal tissue from smokers or nonsmokers suggest that it may be possible to diagnose lung cancer from samples collected on nasal swabs.

Investigators at Boston University Medical Center had previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that gene expression in bronchial and nasal epithelial is similarly altered by cigarette smoke exposure, they sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium.

Towards this end, the investigators collected nasal epithelial brushings from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the Airway Epithelium Gene Expression in the Diagnosis of Lung Cancer (AEGIS) clinical trials. Gene expression was profiled using microarrays.

Results revealed that 535 genes were differentially expressed in the nasal epithelium of AEGIS patients diagnosed with lung cancer versus those with benign disease after one year of follow-up. Using bronchial gene expression data from the AEGIS patients, the investigators found statistically significant concordant cancer-associated gene expression alterations between the two airway sites. Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling.

A nasal lung cancer classifier that combined clinical factors (age, smoking status, time since quitting, mass size) and nasal gene expression (30 genes) was statistically more significant and sensitive than a clinical-factor only model.

"Our findings clearly demonstrate the existence of a cancer-associated airway field of injury that also can be measured in nasal epithelium," said senior author Dr. Marc Lenburg, professor of medicine at Boston University Medical Center. "We find that nasal gene expression contains information about the presence of cancer that is independent of standard clinical risk factors, suggesting that nasal epithelial gene expression might aid in lung cancer detection. Moreover, the nasal samples can be collected non-invasively with little instrumentation or advanced training."

The study was published in the February 27, 2017, online edition of the Journal of the National Cancer Institute.


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.