We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Could Detect Abusive Head Trauma in Infants

By LabMedica International staff writers
Posted on 26 Apr 2017
Print article
Image: The Ziplex System, a medium-density microarray platform (Photo courtesy of Axela).
Image: The Ziplex System, a medium-density microarray platform (Photo courtesy of Axela).
A blood test has been developed and refined that could help clinicians identify infants who may have had bleeding of the brain as a result of abusive head trauma, sometimes referred to as shaken baby syndrome.

Approximately 30% of abusive head trauma (AHT) diagnoses are missed when caretakers provide inaccurate histories or when infants have nonspecific symptoms such as vomiting or fussiness. Missed diagnoses can be catastrophic as AHT can lead to permanent brain damage and even death.

A team of scientists working with the Children's Hospital of Pittsburgh performed a retrospective study on a cohort of 99 patients followed by a prospective cohort of 599 patients to derive and validate the Biomarkers of Infant Brain Injury Score. The Biomarkers of Infant Brain Injury Score predicted intracranial hemorrhage with a higher sensitivity than clinical judgment, the current criterion standard.

Binary logistic regression was used to develop a multivariable model incorporating three serum biomarkers, matrix metallopeptidase-9, neuron-specific enolase, and vascular cellular adhesion molecule-1, and one clinical variable, total hemoglobin. The model was then prospectively validated. Multiplex biomarker measurements were performed using Flow-Thru microarray technology on the Ziplex System, which has potential as a point-of-care system. The Axela's automated testing system allowed the researchers to measure multiple biomarkers simultaneously using an extremely small amount of blood, an important characteristic of a test designed to be used in infants.

The test correctly detected acute intracranial hemorrhage because of abusive head trauma approximately 90% of the time, a much higher rate than the sensitivity of clinical judgement, which is approximately 70%. The specificity of the test was 48% and the sensitivity was 89.3%. The team aimed for the test to be highly sensitive rather than maximizing accuracy, since missing a diagnosis has more serious consequences than performing brain imaging in babies without the condition.

The authors concluded that The Biomarkers for Infant Brain Injury Score, a multivariable model using three serum biomarker concentrations and serum hemoglobin, can identify infants with acute intracranial hemorrhage. Rachel Pardes Berger, MD, MPH, a senior author of the study, said, “The test is not intended to replace clinical judgement, which is crucial. Rather, we believe that it can supplement clinical evaluation and in cases where symptoms may be unclear, help physicians make a decision about whether an infant needs brain imaging.” The study was published on April 10, 2017, in the journal JAMA Pediatrics.

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.