Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Single Cell Genomics Utilized for Evaluation of Prostate Cancer

By LabMedica International staff writers
Posted on 13 Dec 2017
A distinction between indolent and aggressive disease is a major challenge in diagnostics of prostate cancer. Histopathology of tissue biopsies is a standard method used for evaluating cancer risk. Many decades of experience have led to classification of the histological types correlated with clinical outcome.

A small-scale test of a new analytical method to improve the early detection of potentially lethal prostate cancer has been reported. The utility of single nucleus sequencing (SNS) to aid diagnosis has been explored and based on diagnostic biopsy samples; the method promises to more accurately diagnose men who need surgery from those who do not.

A team of scientists collaborating with those at Cold Spring Harbor Laboratory (CSHL, New York, NY, USA) have described a small pilot study on eleven patients. In eight cases, they compared genomic pathology based on SNS to histopathology reports based on standard hematoxylin-eosin (H&E) staining of diagnostic needle core biopsies. They performed SNS on a total of 4,021 nuclei from 122 anatomical locations in 11 patients spanning a broad histological spectrum from benign prostatic epithelium to high grade prostatic intraepithelial neoplasia (HGPIN) and frank carcinoma (within and beyond the prostate) in both early and advanced stage disease.

The team isolated nuclei from frozen core biopsies and biopsy washings, processed and single nuclei were sorted by FACS using the SORP flow cytometer. Single nuclei were deposited into individual wells in a 96-well plate and amplified. Whole-genome amplification (WGA) was performed and after WGA DNA was sonicated using a Covaris focus acoustics system. Multiple libraries were combined into pools ranging from 8-12 libraries to pools of 96 libraries for 76 bp single-read sequencing on single lanes of Illumina’s GAIIx and HiSeq flow cells, respectively.

The team sequences the genomes of several hundred single cells sampled from each patient's biopsy cores. They searched for certain patterns, for the presence of DNA disturbances called copy-number variations (CNVs). Using computational methods to compare CNV patterns, the team looks for cells whose CNV profiles harbor the same irregularities. This is a sign of clonality, as cancerous tumors are composed of clonal cells, genetically aberrant cells that derive from a single wayward ancestor. The parameters all showed good correlation to the measure of prostatic malignancy, the Gleason score, derived from individual prostate biopsy tissue cores.

As the testing method yielded assessments of tumors that more closely matched the verdict of post-surgical pathological analysis (which reveal actual pathology) than the corresponding pre-surgical predictive biopsies, Alexander Krasnitz, PhD, an associate professor and a lead author of the study said, “This is important because treatment decisions in such cases depend on the pre-surgical biopsy, not the surgical specimen. We think single-cell analysis could potentially augment traditional biopsy-core histopathology, significantly improving risk assessment and informing treatment decisions, especially in borderline cases.” The study was published on November 27, 2017, in the journal Cancer Research.

Related Links:
Cold Spring Harbor Laboratory


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Piezoelectric Micropump
Disc Pump
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.