We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Disease Progression Apprised by Post-Treatment Mutation Sequencing

By LabMedica International staff writers
Posted on 26 Sep 2018
Allogeneic hematopoietic stem-cell transplantation is the only curative treatment for patients with myelodysplastic syndrome (MDS). The molecular predictors of disease progression after transplantation are unclear.

Myelodysplastic syndromes are a group of cancers in which immature blood cells in the bone marrow do not mature and therefore do not become healthy blood cells. Early on, there are typically no symptoms, but later symptoms may include feeling tired, shortness of breath, easy bleeding, or frequent infections.

Scientists at the Washington University School of Medicine in St. Louis (St. Louis, MO, USA) and their colleagues sequenced bone marrow and skin samples from 90 adults with MDS who underwent allogeneic hematopoietic stem-cell transplantation after a myeloablative or reduced-intensity conditioning regimen. They detected mutations before transplantation using enhanced exome sequencing, and evaluated mutation clearance by using error-corrected sequencing to genotype mutations in bone marrow samples obtained 30 days after transplantation.

The team used the HiSeq 2500 instrument to do enhanced exome sequencing on matched bone marrow and normal skin samples from the 90 adults with MDS, secondary acute myeloid leukemia, or MDS stemming from prior cancer treatment. The investigators identified 35 patients who had post-treatment MDS progression over a median of nearly five months. Disease progression rose, and progression-free survival at one year dipped from more than 59% to 31.3%, on average, in individuals with mutant alleles present at frequencies beyond 0.5% in 30-day post-treatment samples.

The team subsequently demonstrated that it could identify pre-treatment mutations in 79% of the patients by profiling a smaller set of 40 genes with panel sequencing. Post-treatment samples tested with that panel sequencing method again picked out individuals more prone to disease progression after one year, using 0.5% mutant allele frequency as a cutoff. The authors concluded that the risk of disease progression was higher among patients with MDS in whom persistent disease–associated mutations were detected in the bone marrow 30 days after transplantation than among those in whom these mutations were not detected.

Matthew J. Walter, MD, a professor and senior author of the study, said, “A genetic analysis is a much more precise method of measuring how many blood cells are cancerous. It also lets us find abnormal cells at earlier time points after a stem cell transplant, when there are fewer cancerous cells to find. The earlier we can detect that the cancer is coming back, the more time we may have to intervene.” The study was published on September 13, 2018, in The New England Journal of Medicine.

Related Links:
Washington University School of Medicine in St. Louis


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
High Performance Centrifuge
CO336/336R
New
Myeloperoxidase Assay
IDK MPO ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.