We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Circulating Plasma DNA Potentially Identifies Incipient Tumors

By LabMedica International staff writers
Posted on 06 Mar 2019
Early cancer diagnosis might improve survival rates. As circulating tumor DNA (ctDNA) carries cancer-specific modifications, it has great potential as a noninvasive biomarker for detection of incipient tumors.

A recent study describes another potential breakthrough by analyzing cell-free DNA (cfDNA) to identify imbalances in genome-wide copy number alterations (CNA) as a means of screening healthy individuals for cancers. Identifying tumors at early stages would offer the possibility of improved survival rates.

A team of Belgian and Dutch investigators led by those at the University Hospitals Leuven (Leuven, Belgium) developed a unique genomic profiling method for cfDNA called The Genomic Imbalance Profiling from cfDNA SEQuencing (GIPseq) method. The team collected cfDNA samples from 1,002 elderly Belgian patients with no prior history of cancer, and they used GIPseq to look for chromosomal aberrations that suggested the presence of a malignancy. Six-month clinical analyses took place in cases where aberrations were found, with investigators cataloguing any CNAs present in cfDNA to create a “map” of aberrations found in this aging population.

The scientists reported that in 3% of participants chromosomal imbalances were detected. Follow-up analyses, including whole-body MRI screening, confirmed the presence of five hematologic malignancies: one Hodgkin lymphoma (HL), stage II; three non-HL (type chronic lymphocytic leukemia, Rai I–Binet A; type small lymphocytic lymphoma (SLL), stage III; type mucosa-associated lymphoid tissue, stage I) and one myelodysplastic syndrome with excess blasts, stage II. The CNAs detected in cfDNA were tumor-specific. Furthermore, one case was identified with monoclonal B-cell lymphocytosis, a potential precursor of B-cell malignancy. In 24 additional individuals, CNAs were identified but no cancer diagnosis was made. For nine of them, the aberrant cfDNA profile originated from peripheral blood cells. For 15 others the origin of aberrations in cfDNA remains undetermined.

The authors concluded that their results illustrated the GIPseq’s effectiveness in detecting incipient hematologic malignancies and clonal mosaicism with unknown clinical significance in healthy patients. They demonstrated that cfDNA screening detects CNAs, which are not only derived from peripheral blood, but even more from other tissues. Since the clinical relevance of clonal mosaics in other tissues remains unknown, long-term follow-up is warranted. The study was published January 1, 2019, in the journal Annals of Oncology.

Related Links:
University Hospitals Leuven


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.