We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Test May Replace ELISA for Detecting Antibodies

By LabMedica International staff writers
Posted on 15 Apr 2019
A microwire-based test may replace enzyme-linked immunosorbent assay (ELISA) as the primary method to detect antibodies specific for pathogenic microorganisms in patient's sera.

Detection of viral infection is commonly performed using serological techniques like ELISA to detect antibody responses. Such assays may also be used to determine the infection phase based on isotype (IgG or IgM) prevalence. However, ELISAs demonstrate limited sensitivity and are difficult to perform at the point of care.

Investigators at Colorado State University (Fort Collins, USA) have described a method for detecting antibodies against pathogenic viruses with sensitivity significantly better than ELISA. Their method reportedly enables label-free, rapid detection of ultra-low concentrations of virus specific antibodies.

The simple test comprised a capacitive biosensor that incorporated gold microwires coated with Zika or Chikungunya virus envelope antigen. An electrical current passed through the wire created a charge on the wire. Antibodies from the patient's sample bound to the viral proteins on the wire, which increased the outside mass. In addition, antibody binding increased the ability of the wire to hold the charge. By measuring the change in mass, it was possible to quantify the number of antibodies on the surface of the wire.

The investigators reported that with little discernable nonspecific binding, the sensor could detect as few as 10 antibody molecules in a small volume (30 microliters) of fluid within a few minutes. It could also be used to rapidly, specifically, and accurately determine the isotype of antigen-specific antibodies.

"This type of research project is something that none of us could do on our own," said senior author Dr. Brian Geiss, associate professor of microbiology, immunology, and pathology at Colorado State University. "We synergized our efforts to come up with new solutions to problems we are hoping will eventually be used in clinical settings. We hope that it can be used for point-of-care diagnostics, and that it can be developed into a compact hand-held system that can be used in the clinic or in resource-limited areas."

The microwire antibody detection method was described in the April 15, 2019, issue of the journal Biosensors and Bioelectronics.

Related Links:
Colorado State University


Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.