We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Prostate Cancer Methylation Levels Linked to Epigenetic Profiles

By LabMedica International staff writers
Posted on 07 Nov 2019
Print article
Image: A scanning electron micrograph (SEM) of prostate cancer cells (Photo courtesy of Sloan Kettering Institute).
Image: A scanning electron micrograph (SEM) of prostate cancer cells (Photo courtesy of Sloan Kettering Institute).
Prostate cancer is cancer that occurs in the prostate, a small walnut-shaped gland in men that produces the seminal fluid that nourishes and transports sperm. Prostate cancer is one of the most common types of cancer in men.

If a gene necessary for DNA repair is hypermethylated, resulting in deficient DNA repair, DNA damages will accumulate. Increased DNA damage tends to cause increased errors during DNA synthesis, leading to mutations that can give rise to cancer.

An international team of scientists led by the Ontario Institute for Cancer Research (Toronto, ON, Canada) generated new whole-genome germline sequence data for 80 individuals with untreated prostate cancer, analyzing them alongside 161 germline genomes for treatment-naïve prostate cancer patients sequenced for past studies. After validation testing with data from the Cancer Genome Atlas (TGCA) project, which included tumor methylation profiles and exome sequence or single nucleotide polymorphism (SNP) array data generated from blood samples of prostate cancer patient, they settled on a set of almost 7,600 quantitative trait loci in the germline that appeared to influence methylation levels. From those, they narrowed in on 1,178 methylation quantitative trait loci (meQTL) in the genome that seemed to specifically influence DNA methylation levels in tumor tissue.

With chromatin immunoprecipitation sequencing and other analyses on prostate cancer cell lines or tumor samples, the team went on to explore the relationships between tumor meQTLs and other genomic features in the tumor; from histone modifications and chromatin structure to RNA and protein expression levels. They also searched for tumor meQTLs with potential ties to prostate cancer aggressiveness, identifying a suspicious germline locus in the TCERG1L gene as well as a chromosome 14 haplotype that appeared to influence methylation and expression of AKT1. Since altered AKT1 levels have been implicated in prostate cancer relapse risk, they went on to look for potential links to survival in another 101 individuals with prostate cancer, uncovering an apparent rise in relapse risk in those carrying the alternative allele at the AKT1 locus.

The authors concluded that taken together, these data highlight how germline genotypes can modulate the tumor epigenome to contribute to the tumorigenesis of aggressive prostate cancers. This phenomenon may apply to other tumor types, providing a strategy to create robust, minimally invasive biomarkers for the early detection of aggressive disease. The study was published on October 7, 2019, in the journal Nature Medicine.

Related Links:
Ontario Institute for Cancer Research

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
HIV Test
Anti-HIV (1/2) Rapid Test Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.