We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Methylated DNA in Saliva Samples Predicts Likelihood of Developing Childhood Obesity

By LabMedica International staff writers
Posted on 16 Mar 2020
A study based on analysis of saliva samples supports the concept that determination of DNA methylation in salivary tissue can be used to predict the eventual development of obesity by Hispanic children.

Prior findings reported by investigators at Vanderbilt University Medical Center (Nashville, TN, USA) in non-obese preschool-aged Hispanic children identified 17 CpG dinucleotides (regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide) for which differential methylation in saliva at baseline was associated with maternal obesity status. The current study investigated to what extent baseline DNA methylation in salivary samples in these three to five-year-old Hispanic children predicted the incidence of childhood obesity in a three-year prospective cohort.

For the study, the investigators examined 92 participants of the Growing Right Onto Wellness (GROW) trial who were randomly selected at baseline, prior to randomization, based on maternal phenotype (obese or non-obese). Baseline saliva samples were collected using the DNA Genotek (Ottawa, Canada) Oragene DNA saliva collection kit. Methylation arrays were processed using standard protocol. Associations between child obesity at 36 months and baseline salivary methylation at the previously identified 17 CpG dinucleotides were evaluated using multivariable logistic regression models. Objective data were collected on child height and weight at baseline and 36 months later.

Results, which demonstrated the utility of using saliva for epigenetic studies, revealed that methylation of the NRF1 gene was associated with childhood obesity. NRF1 (Nuclear respiratory factor 1) encodes a protein that functions as a transcription factor, which activates the expression of some key metabolic genes regulating cellular growth and nuclear genes required for respiration, heme biosynthesis, and mitochondrial DNA transcription and replication. A child with NRF1 methylation at baseline was found to have threefold increased odds of being obese three years later, after controlling for maternal BMI and other factors.

"At baseline, these children were all non-obese, but based on their maternal BMI, their DNA was methylated differently at 17 sites," said senior author Dr. Shari Barkin, professor of medicine at Vanderbilt University. "Now we know that some of them emerged into obesity. Most studies have looked for factors in children who are already obese. Our study demonstrates that there are already changes in the physiology - a pathway to obesity - even before the phenotype of obesity emerges. If we can define a predictive epigenetic signature, we can intervene earlier to reduce health disparities in common conditions like obesity."

The childhood obesity study was published in the February 14, 2020, online edition of the journal BMC Medical Genetics.

Related Links:
Vanderbilt University Medical Center
DNA Genotek



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
H.pylori Test
Humasis H.pylori Card
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.