We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rare Kidney Cancer Marked by Molecular Features

By LabMedica International staff writers
Posted on 19 May 2020
Renal medullary carcinoma is a rare cancer of the kidney that predominantly afflicts young people of African descent who carry the sickle cell trait, sickle cell disease, or other sickle hemoglobinopathies that can cause sickling of the red blood cells.

Rare renal medullary carcinoma kidney cancers are marked by frequent focal chromosomal changes and other mutations that may inform future treatment strategies and renal medullary carcinoma (RMC) is a highly lethal malignancy. Men are twice as likely to be affected by RMC as women, and about 70% of RMC cases start from the right kidney.

A large team of medical scientists from the University of Texas MD Anderson Cancer Center (Houston, TX, USA), and other centers in the USA and France used a combination of exome sequencing, RNA sequencing, fluorescence in situ hybridization (FISH), and multiplex ligation-dependent probe amplification (MLPA) analyses, and assessed 31 untreated renal medullary carcinoma tumors and 15 matched normal samples, identifying several recurrent copy number changes in the kidney cancers, from chromosome 8 gains and chromosome 22 losses to upregulated Notch signaling- and innate immune-related pathways.

In general, the team's results revealed recurrent copy number changes falling at focal chromosomal sites, and chromosome sites prone to structural changes in individuals with sickle cell blood traits. Such findings might help to explain why renal medullary carcinoma diagnoses are more frequent in individuals with the sickle cell trait, the authors noted. The kidney cancer is also over-represented in younger individuals with African ancestry.

In contrast to the low number of focal copy number alterations (CNAs) found in malignant rhabdoid tumors (MRT) and atypical teratoid/rhabdoid tumors (ATRT), the authors said they found that renal medullary carcinoma harbors a much more complex genome with high levels of focal CNAs. They also found that the tumors tended to have enhanced DNA replication stress related to SMARCB1 mutations. The replication stress not only contributed to the focal copy number changes, the investigators suggested, but also seemed to increase activity by the MYC signaling pathway, producing tumors predicted to be more apt to respond to DNA-damage repair-targeting drugs.

The authors concluded that they had identified the importance of SMARCB1 loss as a major recurrent genetic alteration in renal medullary carcinoma and found that it confers replication stress-induced vulnerabilities that can be therapeutically targeted. These results highlight a potential opportunity to utilize agents targeting replication stress pathways alone or in combination with other therapies to yield deep and durable therapeutic responses. The study was published on April 30, 2020 in the journal Cancer Cell.

Related Links:
University of Texas MD Anderson Cancer Center


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Piezoelectric Micropump
Disc Pump
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.