We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Flow Cytometry Employed in Diagnosing Male Urethritis

By LabMedica International staff writers
Posted on 17 Dec 2020
According to the established guidelines, diagnosis of non-gonococcal urethritis should be confirmed by demonstrating polymorphonuclear leukocytes from the anterior urethra using a Gram-stained (GSS) or methylene blue-stained urethral smear.

There are several methods for detecting these infections. In recent years, new technologies have emerged in the field of urinalysis methodology, offering quick and standardized opportunities in everyday clinical practice. However, there is only limited information about how to use flow cytometry in diagnosing male urethritis.

Medical Andrologists and their colleagues at Tartu University Hospital (Tartu, Estonia) recruited 306 male patients with infectious urethritis caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium and/or Trichomonas vaginalis. The control group consisted of 192 patients without uro-genital complaints, negative tests for C. trachomatis, N. gonorrhoeae, M. genitalium and T. vaginalis from first-voided urine and no inflammation in first-voided urine, mid-stream urine and urine after prostate massage.

The concentration and total count of white blood cells and bacteria in urine were analyzed using urine flow cytometry. The analyses were performed using fully automated urine particle analyzer Sysmex UF-500i (Sysmex Corporation, Kobe, Japan). Urethritis-associated sexually transmitted infections (STIs were detected from the first-voided urine using a PCR method: C. trachomatis and N. gonorrhoeae DNA by cobas 4800 CT/NG Test (Roche Diagnostics, Risch-Rotkreuz, Switzerland); M. genitalium DNA /Mycoplasma genitalium Real-TM; T. vaginalis DNA by Trichomonas vaginalis Real-TM (Sacace Biotehnologies, Como, Italy).

The investigators reported that the most prevalent infection was chlamydia (64.1%), followed by Mycoplasma genitalium (20.9%), gonorrhoea (7.8%) and trichomoniasis (1.6%). Gonorrhoea caused the highest flow-cytometric leucocyte/bacteria count, followed by chlamydia and Mycoplasma genitalium. Trichomonas vaginalis showed nearly absent inflammation in first-voided urine. Using an empiric flow-cytometry diagnostic threshold for urethritis in first-voided urine (leucocytes ≥ 15/μL and bacteria ≥ 20/μL), the total calculated sensitivity was over 90%. However, when applying such criteria for deciding whether to perform first-voided urine PCR for C. trachomatis, N. gonorrhoeae, M. genitalium and T. vaginalis or not, the team could miss 23 cases with infectious urethritis that makes up 7.5% of all proven cases.

The authors concluded that C. trachomatis (CT) is the most prevalent urethritis-associated STI among the men consulting an andrologist, followed by M. genitalium (MG). A strong inflammatory reaction accompanied by high bacterial concentration in first-voided urine as revealed by flow cytometry is highly predictive of NG infection (sensitivity >95%), while the sensitivity of this method remains slightly lower for CT and MG (>92%) and very low for infrequently occurring T. vaginalis. The study was published on December 2 2020 in the journal PLOS ONE.

Related Links:
Tartu University Hospital
Sysmex Corporation
Roche Diagnostics
Sacace Biotehnologies



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Centrifuge
Hematocrit Centrifuge 7511M4
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.