We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Disease Diagnosis Based on Infrared Analysis of Blood Samples

By LabMedica International staff writers
Posted on 30 Mar 2021
A novel, infrared spectroscopy-based approach detects the status of a person’s health by monitoring changes in the molecular composition of blood samples.

Changes in an individuals health are reflected in characteristic modifications to the molecular composition of biofluids. Detecting these modifications could contribute to the detection of various disease states.

Toward this end, investigators at the Ludwig Maximilian University of Munich (Garching, Germany) and colleagues at the Max Planck Institute of Quantum Optics (Garching, Germany) used Fourier-transform infrared spectroscopy (FTIR) to “fingerprint” blood serum and plasma samples from healthy, non-symptomatic individuals.

The intent of the study was to address questions that are fundamental for the applicability of infrared fingerprinting in health monitoring, which means that the stability of the molecular patterns in healthy persons over time must be firmly established.

Initially, the investigators tested whether infrared spectral fingerprints could be obtained from bulk liquid blood serum and plasma samples in a direct and reproducible fashion. Then, they determined the range of natural biological variation of infrared fingerprints from individual volunteers over time (within-person variation). In addition, they related the variation of the IMFs over time for any given individual to the degree of variability between different individuals (between-person variation) and to operational variabilities inherent to clinical practice.

For this study, the investigators used FITR to fingerprint blood serum and plasma samples from 31 healthy, non-symptomatic individuals, who were sampled up to 13 times over a period of seven weeks and again after six months. The measurements were performed directly on liquid serum and plasma samples, yielding a time- and cost-effective workflow with a high degree of reproducibility.

Results revealed that the infrared molecular fingerprint of each individual donor remained stable over periods ranging from a few days to weeks and months, and that each temporal profile could be readily attributed to the participant concerned. Furthermore, single measurements yielded a multiplicity of person-specific spectral markers, allowing individual molecular phenotypes to be detected and followed over time.

"This newly revealed temporal stability of blood-based infrared fingerprints provides a basis for future applications of minimally invasive infrared spectroscopy as a reliable method for the future of health monitoring," said senior author Dr. Mihaela Žigman, head of the broadband infrared diagnostics group in the department of laser physics at the Ludwig Maximilian University of Munich. "Practically speaking, following-up a person's health status regularly might become paramount for timely-detecting relevant deviations. In addition to its uses in the fields of health monitoring and preventive medicine, systems biology shall also benefit from the availability of the approach."

The FITR study was published in the March 8, 2021, online edition of the journal Nature Communications.

Related Links:
Ludwig Maximilian University of Munich
Max Planck Institute of Quantum Optics



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.