We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Fast, Cheap, and Easy Testing Method Could Become a Game-Changer in Antibiotic Sensitivity Testing

By LabMedica International staff writers
Posted on 26 Apr 2023

Antibiotic resistance, which has become a critical global public health issue, occurs when bacteria evolve to withstand the drugs designed to eliminate them. Antibiotic sensitivity testing (AST) typically involves culture or genetic methods to determine bacterial resistance. Conventional ASTs can take up to 24 hours or longer for slow-growing bacteria, a critical period in clinical settings. Although faster ASTs have been developed, they often require complex and costly equipment. Researchers have now created a rapid, affordable, and accessible method based on optical microscopy that can perform AST at the single-cell level without needing to attach or label bacteria. The technique utilizes a standard optical microscope, a camera or mobile phone, and specialized software.

The new technique developed by researchers at EPFL (Lausanne, Switzerland) and Vrije Universiteit Brussel (Brussels, Belgium) is called optical nanomotion detection (ONMD) and monitors the nanoscale vibrations of individual bacteria before and during antibiotic exposure. Monitoring is performed using a basic optical microscope and a video camera or mobile phone. ONMD observes the microscopic oscillations (nanomotion) of bacterial cells, which signify living organisms and serve as a "signature of life." Nanomotion persists as long as the organism is alive, ceasing immediately upon death. In ONMD, bacterial nanomotion is captured in a video where individual cell movements are monitored with sub-pixel resolution.

Researchers successfully applied ONMD to detect the sensitivity of various bacteria to antibiotics, determining the sensitivities of Escherichia coli, Staphylococcus aureus, Lactobacillus rhamnosus, and Mycobacterium smegmatis (a non-pathogenic bacterial model for tuberculosis) sensitivities to antibiotics like ampicillin, streptomycin, doxycycline, and vancomycin in under two hours. ONMD not only tracks bacteria's life-death transitions upon antibiotic exposure but also reveals changes in bacterial metabolism due to nutrient availability. Tests demonstrated that ONMD can quickly and simply evaluate bacterial sensitivity or resistance to antibiotics by monitoring cellular oscillations. The researchers believe that the method's simplicity and effectiveness make it a game-changer in AST, with far-reaching implications for clinical and research applications, as it can be applied to a wide variety of bacteria.

“We have developed a technique in our laboratories that allows us to obtain an antibiogram within 2-4 hours – instead of the current 24 hours for the most common germs and one month for tuberculosis,” said Dr. Sandor Kasas at EPFL.

“Our technique is not only faster but also simpler and much cheaper than all those existing now,” added Professor Ronnie Willaert at Vrije Universiteit Brussel.


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study demonstrated that electric-field molecular fingerprinting can probe cancer (Photo courtesy of ACS Central Science, 2025, 10.1021/acscentsci.4c02164)

New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma

Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read more

Molecular Diagnostics

view channel
Image: The test monitors blood levels of DNA fragments released by dying tumor cells (Photo courtesy of 123RF)

Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer

Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.