We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Digital Pathology Approach Helps Identify New NSCLC Biomarkers

By LabMedica International staff writers
Posted on 21 Jun 2023

Lung cancer is the leading cause of cancer-related deaths among both genders globally, with a five-year survival rate standing at a mere 18%. Non-small cell lung cancer (NSCLC), divided further into adenocarcinoma, squamous cell carcinoma, and a few rarer types, is the most common diagnosis for these patients. Emerging evidence underscores the critical role of the collagen fiber-rich microenvironment surrounding cancer cells in the growth of these cancers and other solid tumors. In this tumor context, high type I collagen expression is linked to poor prognosis and higher metastasis risk. This association suggests that fibrillar collagens could serve as a key source of cancer-relevant biomarkers and has sparked interest in deciphering their roles in tumor development.

In response to this challenge, researchers at the University of Barcelona (Barcelona, Spain) and the Institute of Bioengineering of Catalonia (IBEC, (Barcelona, Spain) have developed and validated a novel digital pathology approach that quantitatively analyzes collagen fibers in tissue samples from NSCLC patients. The approach utilizes digitized images of patient biopsies stained with a dye named picrosirius red (PSR) and imaged with polarized light. The researchers employed the open-source software CT-FIRE to automatically segment individual fibers in the images and quantify critical characteristics like length, width, or straightness.

The team applied this methodology to analyze 195 samples from patients with adenocarcinoma and squamous cell carcinoma. The findings suggest that fiber straightness could serve as a potential disease biomarker, while high density could indicate a poor prognosis. Interestingly, the prognostic relevance of collagen density appears independent of the clinical tumor stage, suggesting that collagen fiber analysis provides additional crucial information. The new methodology also enabled the comparison of collagen fibers in patient tissue samples with non-cancerous tissue samples. This allowed, for the first time, a quantitative description of the changes occurring in collagen organization in NSCLC. The findings indicate that tumor tissue samples showed an increase in straightness, length, and width, suggestive of abnormal tissue stiffening, especially in adenocarcinoma patients. According to the researchers, this stiffening could be related to various mechanisms that help the tumor evade the immune response, thereby potentially facilitating tumor progression in this type of cancer.

“Our new tool can improve the clinical management of surgical patients with this type of cancer, since it identifies those at an increased risk of relapse and, therefore, can benefit from a comprehensive monitoring and even neoadjuvant therapies (complementary to the main treatment)”, noted Jordi Alcaraz, lecturer at the Faculty of Medicine and Health Sciences of the UB and researcher at IBEC.

Related Links:
University of Barcelona 
IBEC 

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.