Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Enables In-Surgery Genomic Profiling of Brain Tumor for Real-Time Guidance

By LabMedica International staff writers
Posted on 10 Jul 2023

Precise molecular diagnostics, which involve detailing DNA changes within a cell, can significantly influence a neurosurgeon's decision-making during surgery, such as the extent of brain tissue to be excised. Over-removal in the case of less aggressive tumors can negatively impact a patient's neurological and cognitive functioning, while under-removal in the case of highly aggressive ones can leave malignant tissue behind, resulting in rapid growth and spread. Current intraoperative diagnostic methods involve brain tissue freezing and microscopic examination, but these techniques often distort cell appearance and compromise clinical assessment accuracy. Furthermore, the human eye, even with advanced microscopes, can fail to reliably identify subtle genomic variations on a slide. Now, a novel artificial intelligence (AI) approach addresses these issues.

Scientists at Harvard Medical School (Boston, MA, USA) have developed an AI tool capable of swiftly decoding a brain tumor's DNA to determine its molecular identity during surgery. This process can take several days or even weeks using traditional methods. Having immediate access to a tumor's molecular type helps neurosurgeons decide on the extent of brain tissue removal and the application of tumor-killing drugs directly into the brain, all while the patient is still on the operating table. Modern advances in genomics have enabled pathologists to distinguish molecular signatures and associated behaviors among various brain cancer types. Aggressive glioma, for instance, has three main subvariants, each bearing unique molecular markers and growth propensities. Although AI models have been developed to profile other cancer types (e.g., colon, lung, breast), gliomas present unique challenges due to their molecular complexity and vast variation in tumor cell morphology.

The newly developed tool, named CHARM (Cryosection Histopathology Assessment and Review Machine), significantly expedites molecular diagnostics, which can be particularly useful in regions with limited access to technology for quick cancer genetic sequencing. CHARM was developed using 2,334 brain tumor samples from 1,524 individuals with glioma from three distinct patient populations. The tool exhibited a 93% accuracy rate when identifying tumors with specific molecular mutations in an unseen set of brain samples, and it successfully classified three major types of gliomas with distinct molecular features. Moreover, the tool was adept at visually analyzing tissue surrounding malignant cells, identifying areas of greater cellular density and higher cell death rates, both of which are indicators of more aggressive glioma types.

Additionally, CHARM was able to detect clinically important changes in a subset of low-grade gliomas, a less aggressive glioma subtype that is less likely to invade surrounding tissue. The tool further linked cellular appearance with the molecular profile of the tumor, thereby enabling the algorithm to determine how a cell's appearance relates to the tumor's molecular type. This comprehensive assessment improves the model's accuracy and mirrors how a human pathologist would visually evaluate a tumor sample. While CHARM was initially trained and tested on glioma samples, the researchers believe it can be successfully retrained to identify other brain cancer subtypes. However, the tool would require periodic retraining to reflect new disease classifications as they emerge from new findings. Although CHARM is freely available to other researchers, it needs clinical validation through real-world testing and FDA clearance before it can be used in hospitals.

“Right now, even state-of-the-art clinical practice cannot profile tumors molecularly during surgery. Our tool overcomes this challenge by extracting thus-far untapped biomedical signals from frozen pathology slides,” said study senior author Kun-Hsing Yu, assistant professor of biomedical informatics in the Blavatnik Institute at HMS.

Related Links:
Harvard Medical School 

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.