We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Fluorescence Microscopy Combined with AI Enables Detection of Tumors at Early Stage

By LabMedica International staff writers
Posted on 18 Dec 2023

Detecting cancer in the body or monitoring it during therapy is typically a time-consuming process, often conducted in later phases when signs become obvious. Researchers engaged in cancer research are continuously seeking reliable and sensitive techniques to detect a developing tumor at a very early stage and to closely monitor the success or failure of cancer therapy. Therefore, a breakthrough in early cancer diagnosis is a significant advancement. Researchers have now achieved a breakthrough with the development of a test for early diagnosis of cancer.

Researchers at the Paul Scherrer Institute (Würenlingen, Switzerland) have demonstrated that changes in the organization of the cell nucleus of certain blood cells can reliably indicate the presence of a tumor in the body. Using fluorescence microscopy, the team examined the chromatin of these blood cells – DNA packaged into a complex structure. They analyzed about 200 different characteristics, including the external texture, the packing density, and the contrast of the chromatin in lymphocytes or monocytes. They input microscope images from healthy and sick test participants into an artificial intelligence (AI) system and employed “supervised learning” to teach the software known differences.

In the subsequent “deep learning” phase, the algorithm automatically identified differences between “healthy” and “sick” cells that are not discernible to the human eye. This technique enabled the scientists to distinguish between healthy individuals and those with cancer with approximately 85% accuracy. They were also able to correctly identify the type of tumor disease – melanoma, glioma, or head and neck tumor. This new technique, based on blood cell chromatin, is potentially applicable to various cancer types and not just limited to follow-up of proton therapy. It could also be relevant to other forms of therapy, including radiation therapy, chemotherapy, and surgery, although further research is needed to confirm these applications.

“This is the first time anyone, worldwide, has achieved this,” said G.V. Shivashankar, head of PSI‘s Laboratory for Nanoscale Biology who led the research team.

Related Links:
Paul Scherrer Institute

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.