We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Outperforms Expert Pathologists in Predicting Lung Cancer Spread

By LabMedica International staff writers
Posted on 12 Mar 2024

For years, the medical community has been struggling with the challenge of predicting which lung cancer patients are most likely to experience metastasis. This knowledge is crucial for treating early-stage non-small cell lung cancer (NSCLC) patients, as it influences whether they should undergo aggressive treatments like chemotherapy or radiation after lung surgery. Over half of stage I–III NSCLC patients eventually face brain metastasis, but for many others, such intensive treatments are unnecessary. Now, researchers have found that artificial intelligence (AI) could be a promising tool in aiding physicians with these critical decisions.

A groundbreaking pilot study conducted by Caltech (Pasadena, CA, USA) and Washington University School of Medicine in St. Louis (WUSTL, St. Louis, Mo, USA) revealed AI's capability to outperform expert pathologists in predicting the likelihood of cancer metastasis in NSCLC patients. The study involved training a deep-learning network, a sophisticated type of AI program, using hundreds of thousands of image tiles derived from biopsy images of 118 NSCLC patients. These images are typically reviewed by pathologists for cell abnormalities indicating cancer progression. The AI was tested with 40 additional biopsy images to assess its ability to predict brain metastases, demonstrating a striking 87% accuracy, surpassing the 57% accuracy rate of four expert pathologists.

Notably, the AI's predictions were even more accurate for the earliest-stage NSCLC patients (stage I) and were based on standard microscopic slides. The researchers believe that incorporating more data, such as disease severity and biomarkers, could enhance the AI's predictive capabilities. However, the researchers caution that this is just an initial step, and a larger study is necessary to validate these findings. Interestingly, the AI doesn't explicitly reveal the factors influencing its predictions, prompting ongoing research to decode the complex tumor cell features and their environment it might be analyzing. Going forward, Caltech scientists aim to develop improved instrumentation and procedures for collecting uniform, high-quality biopsy images, which could further refine the accuracy of AI predictions in cancer treatment.

"Overtreatment of cancer patients is a big problem," said Changhuei Yang, the Thomas G. Myers Professor of Electrical Engineering, Bioengineering, and Medical Engineering at Caltech. "Our pilot study indicates that AI may be very good at telling us in particular which patients are very unlikely to develop brain cancer metastasis."

"Our study is an indication that AI methods may be able to make meaningful predictions that are specific and sensitive enough to impact patient management," added Richard Cote, head of the Department of Pathology & Immunology at WUSTL.

Related Links:
Caltech
WUSTL

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Silver Member
ACTH Assay
ACTH ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.