We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bioinformatics Tool to Identify Chromosomal Alterations in Tumor Cells Can Improve Cancer Diagnosis

By LabMedica International staff writers
Posted on 25 Mar 2024

Chromosomal instability is a common characteristic in solid tumors, playing a crucial role in the start, progression, and spread of cancer. This condition arises from alterations in the chromosome number and structure during cell division, leading to DNA changes and impacts on cellular functions. Furthermore, chromosomal instability contributes to tumor development and progression, increases tumor diversity, and fosters resistance to cancer treatments. Now, a new bioinformatics tool that can identify these chromosomal alterations characteristic of cancer cells could improve diagnosis and help design personalized treatment plans.

This new detection system, known as QATS (QuAntification of Toroidal nuclei in biological imageS), has been designed by a research team from the University of Barcelona (Barcelona, Spain) and IRB Barcelona (Barcelona, Spain). This computational biological imaging processing tool can improve tumor research and classification by automatically identifying and quantifying the phenotypes associated with chromosomal instability in the nuclei of cancer cells. QATS focuses on detecting and quantifying toroidal nuclei, which are new biomarkers of chromosomal instability, in biological images. Unlike normal nuclei, toroidal nuclei are phenotypically different as they have a ring-like shape with a void containing cytosolic material. Recognized recently as critical biomarkers for chromosomal instability, toroidal nuclei offer a new avenue for understanding and combating cancer.

Until now, the assessment of chromosomal instability in cancer cells has been primarily based on quantifying micronuclei, which are irregular structures derived from the cell nucleus that may contain chromosomes or chromosomal fragments. By introducing the assessment of toroidal nuclei into both research and clinical settings, there is significant potential for improving tumor classification and developing treatments tailored to individual patients. The QATS system has already proven effective in preclinical studies involving cancer cell lines by demonstrating its capability to identify and quantify toroidal nuclei accurately.

“In the future, the application of QATS in more complex biological scenarios — human tissue samples from patient biopsies — will represent a breakthrough for the scientific and medical communities to improve cancer diagnosis and patient treatment”, concluded the researchers.

Related Links:
University of Barcelona
IRB Barcelona

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.