We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Virtual Skin Biopsy Determines Presence of Cancerous Cells

By LabMedica International staff writers
Posted on 12 Apr 2024

When dermatologists spot an unusual mark on a patient's skin, they face a choice: monitor it for some time or remove it for biopsy. Similarly, when removing breast tumors, surgeons must send excised tissues to pathologists who take several days to determine if any cancerous cells remain, leading to a second surgery for removing additional cells in about 20% of cases. Pathologists process these tissues by slicing them into thin sections and staining them with hematoxylin and eosin (H&E), which enhances the visibility of cellular structures and is crucial for diagnosing cancers and other diseases. However, this method is labor-intensive and irreversible; once a biopsy is sliced in one direction, it cannot be resectioned for alternative views. Now, a "virtual biopsy" could allow dermatologists to forego the scalpel and scan the skin to check for cancerous cells without an incision. Similarly, surgeons might soon be able to determine if they have completely removed the tumor during the procedure itself by using real-time imaging instead of waiting for traditional pathology results.

Researchers at Stanford Medicine (Stanford, CA, USA) have introduced a technique that utilizes lasers to penetrate tissue and create detailed three-dimensional reconstructions of cellular structures. This method enables the production of cross-sectional images similar to those made by slicing biopsy samples, which are typically examined under a microscope. This breakthrough could allow for noninvasive skin scans and speed up the biopsy results from other tissues, potentially offering more comprehensive diagnostic information. While further development is required to bring this technology to clinical practice, the researchers are optimistic that their innovation will transform how biopsies are performed.

“We’ve not only created something that can replace the current gold-standard pathology slides for diagnosing many conditions, but we actually improved the resolution of these scans so much that we start to pick up information that would be extremely hard to see otherwise,” said Adam de la Zerda, Ph.D., an associate professor of structural biology.

Related Links:
Stanford Medicine

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.