We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Integrated With Optical Imaging Technology Enables Rapid Intraoperative Diagnosis

By LabMedica International staff writers
Posted on 17 May 2024

Rapid and accurate intraoperative diagnosis is essential for tumor surgery as it guides surgical decisions with precision. Traditional intraoperative assessments, such as frozen sections based on H&E histology, are demanding in terms of time, resources, and labor and also raise concerns about specimen consumption. D-FFOCT, a high-resolution optical imaging technology, allows for the quick generation of virtual histology. Researchers have now developed an intraoperative diagnostic workflow that uses deep learning algorithms to classify tumors from D-FFOCT images, offering rapid and automated diagnosis for surgical decision-making.

A prospective cohort study conducted by researchers from Peking University People’s Hospital (Beijing, China) included 224 breast samples imaged using D-FFOCT. This imaging technique is non-destructive and requires no tissue preparation or staining. The D-FFOCT images were segmented into patches, and slides were allocated into a training set (182 slides, 10,357 patches) and an external testing set (42 slides, 3,140 patches) based on the order in which they were collected. A five-fold cross-validation method was employed to train and fine-tune the model. A machine learning model aggregated the patch prediction results to the slide level after feature extraction.

The testing set showed the model performed well at the patch level, identifying breast tissue types with an AUC of 0.926 (95% CI: 0.907–0.943). At the slide level, the diagnostic accuracy reached 97.62%, with a sensitivity of 96.88% and a specificity of 100%. Accuracy did not significantly differ across various molecular subtypes and histologic tumor types of breast cancer. Visualization heatmaps demonstrated that the deep learning models could identify features corresponding to metabolically active cell clusters in D-FFOCT images, aligning with expert assessments. This image analysis approach could potentially extend to various tumor types, given the conserved features detected in the model. In a margin simulation experiment, the diagnosis process took about three minutes, with the deep learning model achieving a high accuracy of 95.24%.

Based on the results, the study has proposed an intraoperative cancer diagnosis workflow integrating D-FFOCT with a deep learning model. In simulated intraoperative margin diagnosis, the workflow substantially reduced diagnosis time by about tenfold compared to traditional methods and proved to be highly cost-effective in terms of labor. No tissue was destroyed during optical imaging and analysis. Overall, this workflow offers a transparent solution for rapid and accurate intraoperative diagnosis, potentially guiding surgical decisions effectively.

Related Links:
Peking University People’s Hospital 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Auto Clinical Chemistry Analyzer
cobas c 703
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.