Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Tool Predicts Cancer Patients’ Response to Immunotherapy

By LabMedica International staff writers
Posted on 05 Jun 2024

Immune checkpoint inhibitors are a form of immunotherapy drug that enables immune cells to target and destroy cancer cells. At present, the Food and Drug Administration has approved two predictive biomarkers for identifying patients who might benefit from immune checkpoint inhibitors. The first biomarker is tumor mutational burden, which measures the number of mutations in the DNA of cancer cells. The second biomarker is PD-L1, a protein found on tumor cells that inhibits the immune response and is targeted by some immune checkpoint inhibitors. However, these biomarkers are not always reliable in predicting a patient's response to immune checkpoint inhibitors. Recent machine-learning models utilizing molecular sequencing data have demonstrated potential in predicting responses, but this data is costly and not routinely collected. Researchers have now created an artificial intelligence (AI) tool that uses standard clinical data, such as results from a basic blood test, to predict if a patient’s cancer will respond to immune checkpoint inhibitors.

The machine-learning model, named Logistic Regression-Based Immunotherapy-Response Score (LORIS), was developed by scientists at the National Cancer Institute (Bethesda, MD, USA). It aims to assist doctors in determining the efficacy of immunotherapy drugs for a patient's cancer treatment. The AI model bases its predictions on five clinical features routinely collected from patients: age, cancer type, history of systemic therapy, blood albumin level, and blood neutrophil-to-lymphocyte ratio, an indicator of inflammation. The model also considers tumor mutational burden, evaluated through sequencing panels.

This model was built and validated using data from multiple independent datasets comprising 2,881 patients treated with immune checkpoint inhibitors across 18 types of solid tumors. The model accurately predicted both a patient’s likelihood of responding to an immune checkpoint inhibitor and their overall survival time, including the period before disease recurrence. Remarkably, the model also identified patients with low tumor mutational burden who could still benefit from immunotherapy. The findings of the study were published in Nature Cancer on June 3, 2024. The researchers emphasized the need for larger prospective studies to further validate the AI model in clinical settings and have made it publicly accessible. 

Related Links:
National Cancer Institute
LORIS

Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Ureaplasma Urealyticum Test
Duplicα RealTime Ureaplasma Urealyticum Kit
New
RFID Tag
AD-302 M730
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The DNA sequencing method indentifies the bacterial causes of infections to determine the most effective antibiotics for treatment (Photo courtesy of Shutterstock)

New DNA Test Diagnoses Bacterial Infections Faster and More Accurately

Antimicrobial resistance has emerged as a significant global health threat, causing at least one million deaths annually since 1990. The Global Research on Antimicrobial Resistance (GRAM) Project warns... Read more

Pathology

view channel
Image: The Results Manager System (Photo courtesy of QuidelOrtho)

Informatics Solution Elevates Laboratory Efficiency and Patient Care

QuidelOrtho Corporation (San Diego, CA, USA) has introduced the QuidelOrtho Results Manager System, a cutting-edge informatics solution designed to meet the increasing demands of modern laboratories.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.