Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Low-Cost CRISPR-Based Paper Strip Test to Improve Flu Diagnosis and Surveillance

By LabMedica International staff writers
Posted on 24 Jun 2024

Annually, less than 1% of people who contract the flu are tested, largely due to the need for skilled personnel and sophisticated equipment. Now, researchers have developed a low-cost paper strip test that could enable more individuals to determine the type of flu they have and receive appropriate treatment.

This innovative test developed by researchers from the Broad Institute of MIT and Harvard (Cambridge, MA, USA) and Princeton University (Princeton, NJ, USA) employs CRISPR technology to differentiate between the primary seasonal flu types, influenza A and B, and the subtypes H1N1 and H3N2. It can also identify strains resistant to  antiviral treatments and could potentially extend to detecting swine and avian flu strains, including H5N1, which currently affects cattle. This could enhance both outbreak response and clinical care by making accurate, affordable, and rapid testing accessible in doctors’ offices and laboratories across the world. The test is based on a technology known as SHINE, developed by the team in 2020, which uses CRISPR enzymes to identify specific viral RNA sequences in samples. Initially applied to detect SARS-CoV-2 and its variants Delta and Omicron, the technology was adapted in 2022 to screen for widespread viruses like the flu, aiming for use in field or clinic settings outside traditional hospital or diagnostic lab environments.

Traditional diagnostic methods like polymerase chain reaction (PCR) involve long processing times, specialized training and equipment, and the need for deep freeze storage for reagents. In contrast, the SHINE assay operates at room temperature and completes in about 90 minutes. The only equipment required currently is an affordable heat block to heat the reactions, and efforts are underway to reduce the result time to 15 minutes. The researchers have also fine-tuned SHINE to differentiate between various flu strains and suggest it might later be adjusted to identify different viruses with similar symptoms, such as influenza and SARS-CoV-2. This capability could aid clinicians in deciding whether to administer treatments like Oseltamivir, which is only effective against certain flu strains. In outbreak scenarios, rapid testing could also enable more targeted sample collection to better track virus spread. Moving forward, the team plans to further adapt SHINE for detecting both avian and swine influenza strains.

“Ultimately, we hope these tests will be as simple as rapid antigen tests, and they’ll still have the specificity and performance of a nucleic acid test that would normally be done in a laboratory setting,” said Cameron Myhrvold, assistant professor at Princeton University and co-senior author on the study, which was published in The Journal of Molecular Diagnostics on June 18, 2024.

Related Links:
Broad Institute
Princeton University

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
TORCH Infections Test
TORCH Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.