We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Technology for Sampling Body Liquids in Confined Spaces to Enable Early Cancer Detection

By LabMedica International staff writers
Posted on 17 Sep 2024

Body fluids—such as blood, pancreatic juice, urine, and mucus—contain valuable information about chemical composition, biomarkers, bacterial colonies, and other key components. This information aids researchers in understanding the mechanisms of various diseases, including cancer, and monitoring patients' health. Wireless mobile robots at the millimeter scale have shown promise in navigating confined spaces to collect these fluids due to their small size and agile movement. However, these devices have lacked the ability to sample liquids effectively because of the absence of efficient triggering and sealing mechanisms at such small scales. Researchers have now addressed this gap by developing technology for sampling body fluids in narrow and complex spaces, which could enable early detection of diseases like cancer.

A research team at Vanderbilt University (Nashville, TN, USA) has developed millimeter-scale soft capsules made of hydrogel-and-elastomer hybrids, which are controlled using external magnetic fields. These devices, according to the researchers, can be delivered and retrieved via a thin catheter and are capable of navigating tubular structures that are otherwise inaccessible to catheters. The soft capsules are coated with a specialized wetting property that enables them to efficiently pump liquids inside. As reported in Science Advances, the integration of on-demand triggering, sampling, and sealing mechanisms, along with agile group locomotion, allowed the team to demonstrate precise control of these soft capsules. They successfully navigated and sampled body fluids in a phantom and ex vivo animal organ, guided by ultrasound and X-ray medical imaging.

“The millimeter-scale soft capsules introduced in this work open avenues for minimally invasive and targeted liquid biopsy in confined spaces such as the pancreas duct, enabling early disease diagnosis and providing insights into disease development through the sampling, retrieval, and analysis of abundant chemicals within organs,” said Xiaoguang Dong, assistant professor of mechanical and biomedical engineering at Vanderbilt University, who led the research.

Related Links:
Vanderbilt University

Gold Member
Troponin T QC
Troponin T Quality Control
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Rheumatoid Arthritis Test
Finecare RF Rapid Quantitative Test
New
Gold Member
LEISHMANIA Test
LEISHMANIA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The DNA sequencing method indentifies the bacterial causes of infections to determine the most effective antibiotics for treatment (Photo courtesy of Shutterstock)

New DNA Test Diagnoses Bacterial Infections Faster and More Accurately

Antimicrobial resistance has emerged as a significant global health threat, causing at least one million deaths annually since 1990. The Global Research on Antimicrobial Resistance (GRAM) Project warns... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.