We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI-Powered Immuno-Oncology Tool Predicts Lung Cancer Treatment Outcomes

By LabMedica International staff writers
Posted on 02 Dec 2024

Immune checkpoint inhibitors (ICI) are used to treat non-small cell lung cancer (NSCLC) by enhancing the immune system's ability to fight cancer. However, identifying which patients will benefit most from this treatment remains a challenge. Now, advancements in artificial intelligence (AI) and diagnostic tools offer the potential to enhance treatment outcomes and survival rates for NSCLC patients by helping doctors more accurately predict their response to ICI therapy.

Researchers at SUNY Upstate Medical University (Syracuse, NY, USA) have developed HistoTME, an affordable and easy-to-implement AI tool. This advanced deep learning algorithm analyzes routinely stained histopathology images of tumor samples to predict molecular subtypes (based on bulk RNA sequencing), providing insights into the tumor microenvironment (TME). By examining these pathology images, HistoTME identifies specific cell types in the surrounding tumor tissue, offering valuable information about the patient's unique TME composition. This is crucial for predicting personalized ICI treatment responses, especially in patients with low PD-L1 expression, a key marker commonly used in companion diagnostics. The algorithm was validated on a multi-modal dataset comprising over 650 lung cancer patients and more than 1500 images.

The researchers hope this method will assist doctors in selecting personalized treatment plans with greater accuracy and cost-efficiency, especially for patients without access to expensive molecular testing. Moreover, this test could complement existing companion diagnostics, which often struggle to identify the appropriate patients for the right treatments. The next phase of the study will involve clinical validation of HistoTME, which will further evaluate its effectiveness in real-world clinical environments and may lead to its integration into routine cancer care.

“AI-driven diagnostics and prognostication have the potential to transform the future of healthcare practices and precision oncology,” said Upstate researcher Tamara Jamaspishvili, MD/PhD, who won the "Best Research Poster" Award for Faculty at the Digital Pathology Association's national conference, PathVisions 2024 for her work using AI and computational pathology to improve cancer diagnosis and treatment.

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.