We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Test Measures Biological Age Using Saliva or Blood

By LabMedica International staff writers
Posted on 26 Feb 2025

Biological age refers to the rate at which a person’s body is aging, and it may differ from their chronological age. Factors such as genetics, lifestyle, and health conditions influence biological age. Gaining a better understanding of biological aging can help researchers and clinicians detect age-related diseases, such as Alzheimer’s disease, and create treatments to slow the aging process. However, many current methods for measuring biological age are costly and complex. Now, a new model addresses these issues with a simple yet effective approach.

A research team comprising of experts from both industry including EpiMedTech Global (Hong Kong) and academic institutions including Oxford University (Oxford, UK) has developed EpiAgePublic, a method to estimate biological age by analyzing only three key DNA sites in the ELOVL2 gene, which is a well-known aging marker. Unlike traditional methods that require the analysis of thousands of DNA regions, this approach streamlines the process without sacrificing accuracy. The study examined data from over 4,600 individuals with varying health conditions, including Alzheimer’s disease and HIV, and found that EpiAgePublic accurately tracks aging patterns and identifies factors such as chronic illness or stress that speed up the aging process. The findings, published in Aging, show that EpiAgePublic is at least as effective, if not more so, than more complex models in predicting biological age across diverse populations.

The researchers also showed that the test works well with saliva samples, providing a convenient and non-invasive alternative to blood-based tests. This makes epigenetic age testing easier to perform in both clinical and research settings. The ability to measure epigenetic aging with a quick and cost-effective test could have significant implications for healthcare, longevity research, and personalized medicine. The method could be used in hospitals, wellness clinics, and studies focused on aging to monitor the aging process and evaluate anti-aging treatments. Additionally, it may help clinicians detect early signs of aging-related diseases, leading to better preventive care. The study’s findings also underscore the potential of next-generation sequencing in epigenetic research, which could pave the way for more precise and accessible diagnostics for aging. Future research will aim to expand this model to other health conditions and integrate it into routine medical practice.

“The simplicity and precision of epiAgePublic, designed for compatibility with next-generation sequencing (NGS) technologies, mark a significant step forward in the field of epigenetic research,” noted the researchers.

Related Links:
EpiMedTech Global
Oxford University

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Multi-Function Pipetting Platform
apricot PP5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.