We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring

By LabMedica International staff writers
Posted on 17 Mar 2025

Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower concentrations of certain substances. For instance, female hormones are present in the body at concentrations millions of times lower than glucose. To effectively study hormone fluctuations, highly sensitive sensors are required, and this necessitates a significant improvement in the accuracy of biosensors. In a new study, researchers have developed nanomaterials that could contribute to more accurate sensors for future healthcare applications. These advancements could lead to continuous health monitoring, enabled by carbon nanotubes.

Researchers at the University of Turku (Turku, Finland) have successfully created sensors using single-wall carbon nanotubes, which are well-suited for such applications. Single-wall carbon nanotubes are made from a single atomic layer of graphene. Until now, a major challenge in developing these materials has been that the nanotube manufacturing process yields a mix of conductive and semi-conductive nanotubes, which vary in chirality—the way the graphene sheet is rolled into the cylindrical shape of the nanotube. The electrical and chemical properties of nanotubes are highly dependent on their chirality. The research team developed methods to separate nanotubes with different chiralities, and in this study, they successfully distinguished between two nanotubes with similar chiralities while identifying their typical electrochemical properties.

By purifying and separating the carbon nanotubes, the researchers were able to test their differences as sensor materials. Although nanotubes are typically used in hybrid sensors when combined with other surfactants, the current study focused on sensors made entirely from nanotubes. Furthermore, the researchers gained precise control over the concentration of nanotubes, allowing them to compare the properties of different chiralities. One key finding was that one type of nanotube (6.5) was more efficient than the other (6.6) in adsorbing dopamine. Adsorption, which refers to the ability of a material to bind atoms or molecules to its surface, is especially crucial when the concentrations of the substances being measured are very low. The study's results are the first to demonstrate that the electrochemical response of the sensor is influenced by chirality. In future research, computational models could be employed to determine the optimal chirality for measuring each molecule.

“The result is significant because by being able to precisely control the properties of carbon nanotubes we can fine-tune the ability of the sensor material to detect changes in specific substances," said Doctoral Researcher Ju-Yeon Seo.

Related Links:
University of Turku

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Myeloperoxidase Assay
IDK MPO ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Pathology

view channel
Image: Microscopic images showing healthy villi on the left and diseased villi on the right (Photo courtesy of Florian Jaeckle/University of Cambridge)

Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy

Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.