We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

By LabMedica International staff writers
Posted on 15 Nov 2024
Print article
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology patients.

In a new study, scientists at the Institute of Science of Data and Artificial Intelligence (DATAI) at the University of Navarra (Pamplona, Spain) analyzed data from over 3,000 patients diagnosed with lung and bladder cancers. By employing machine learning models, the researchers discovered new genetic signatures unique to each stage of these cancers and created a system known as the "IFIT index" (Index of "Physical Immunity"). This system is aimed at personalizing therapies to enhance their effectiveness. The IFIT index measures a patient's immunological fitness, categorizing them based on their risk at various stages of the disease. This approach allows for predicting how well a patient will respond to treatment depending on the activity of their immune system in different stages of cancer treatment.

The research, published in the Journal for ImmunoTherapy of Cancer, is based on an analysis of the cancer immunity cycle (CIC), which looks at how immune system signals affect the success of immunotherapy. Using this framework and AI tools, the researchers identified specific patterns of cellular activity linked to the molecular stages of the disease and developed the IFIT index. This innovation highlights the potential of AI in advancing personalized medicine and offers new prospects in the fight against cancer. The team also indicated that this technique will continue to be refined through future collaborative studies involving other cancer types.

"Immunotherapy represents one of the most promising frontiers in the fight against cancer, and by using artificial intelligence models, we can further fine-tune treatments based on each patient's immune profile," said Rubén Armañanzas, leader of DATAI's laboratory Digital Medicine and one of the lead authors of the study.

 

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit
New
ELISA System
ABSOL HS DUO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.