We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated Multiplex Diagnostics System Enables Rapid Detection of Multiple Pathogens

By LabMedica International staff writers
Posted on 04 Dec 2024
Print article
Image: The automated multiplex diagnostics system developed by HKBU Professor Terence Lau detects 42 respiratory pathogens in less than 1.5 hours (Photo courtesy of HKBU)
Image: The automated multiplex diagnostics system developed by HKBU Professor Terence Lau detects 42 respiratory pathogens in less than 1.5 hours (Photo courtesy of HKBU)

Each year, the World Health Organization (WHO) releases its Compendium of Innovative Health Technologies for Low-resource Settings, which highlights commercially available solutions and prototypes designed to tackle the challenges faced by low- and middle-income countries in accessing effective, safe, and affordable health technologies. These technologies are crucial in addressing infectious diseases and the growing burden of non-communicable diseases such as cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes. The WHO’s 2024 Compendium has recommended a novel automated multiplex diagnostics system as an innovative technology with significant potential to support health systems in these regions.

Developed at Hong Kong Baptist University (HKBU, Kowloon Tong, Hong Kong), the Automated Multiplex Diagnostics System recommended by the WHO’s 2024 Compendium offers a fully automated solution for conventional laboratory-based PCR (polymerase chain reaction) processes. The system consists of three integrated components: an analytical machine, a microfluidic reagent cartridge, and software. Its unique design enables the detection of 42 respiratory pathogens—28 viruses, 11 bacteria, and 3 fungi—in less than 1.5 hours, without requiring a resource-heavy laboratory, specialized equipment, or highly trained technicians, while ensuring high sensitivity and specificity.

In addition to its impressive performance, the system also offers several advantages in terms of cost-effectiveness, reduced turnaround time, and the ability to analyze multiple targets simultaneously. The system, created by a research team led by Professor Terence Lau from HKBU, is featured as one of 21 highlighted health technologies in the WHO’s 2024 Compendium under the prototype category. The concept for a fully automated, rapid, accurate, and affordable multiplex pathogen detection device was conceived in 2015, and its capabilities were expanded to support the detection of 40 targets, including SARS-CoV-2, in response to the urgent demand for decentralized diagnostics during the COVID-19 pandemic in 2020.

"The System can identify infectious diseases and even non-communicable diseases, and is suitable for other non-medical applications," said Professor Lau. "With this System, we will be able to provide a comprehensive solution that can eventually promote equitable access and decentralized testing for an effective and high-quality healthcare system which WHO emphasizes."

Related Links:
HKBU 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: A new test finds bacteria in liquids and indicate their presence by changing color (Photo courtesy of Georgia Kirkos/McMaster University)

New Hands-Free Rapid Test Detects Bacteria in Fluids

Bacteriophages, the most abundant form of life on Earth, are specialized to target and destroy specific types of bacteria. Their natural ability to fight bacteria has long been harnessed to treat infections.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.