We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blood-Based Diagnostic Technology Accurately Detects Prenatal Exposure Syndromes and Birth Disorders

By LabMedica International staff writers
Posted on 01 Aug 2024
Print article
Image: Blood testing using technology called EpiSign (Photo courtesy of LHSC)
Image: Blood testing using technology called EpiSign (Photo courtesy of LHSC)

Researchers are employing sophisticated technology and artificial intelligence (AI) to improve the diagnosis of rare diseases and prenatal exposure-related birth abnormalities, as detailed in two studies featured in the American Journal of Human Genetics and Genetics in Medicine. The technology, known as EpiSign, utilizes AI to analyze the epigenome — each individual's unique chemical code that overlays their DNA and regulates gene activity. Currently, EpiSign assists in diagnosing over 100 genetic conditions that have historically been challenging to detect.

The first study, conducted by the team at London Health Sciences Centre (LHSC, London, ON, Canada) that developed EpiSign, demonstrated its efficacy in identifying a group of birth disorders known as recurrent constellation of embryonic malformations (RCEMs). Despite being recognized for over seven decades, the specific causes and diagnostic markers for RCEMs have remained elusive, making it difficult to provide accurate diagnosis to affected families. EpiSign now offers a groundbreaking method to accurately detect RCEMs using just a blood test.

In the second study, the same research team applied EpiSign to identify a reliable biomarker for fetal valproate syndrome for the first time. This syndrome results from prenatal exposure to high levels of medications used in managing bipolar disorder, migraines, or epilepsy, leading to a range of neurodevelopmental issues in children, such as learning disabilities, communication and motor disorders, autism, and intellectual disabilities. This research is part of an ongoing effort by the EpiSign Discovery Research network, which is expanding to study and develop biomarkers for over 700 rare disorders. The team has highlighted the vast potential of this research, which could extend to diagnosing, prognosing, and treating a wide array of other conditions, including cancer.

“One in 20 people have a rare disease that could present at any point in their lives and can be caused by genes, environmental exposures, or their combined effects,” said Dr. Bekim Sadikovic, Lawson Scientist at LHSC, who developed the EpiSign technology. “We can help diagnose a growing number of genetic diseases and, now for the first time, we can look beyond the genome and accurately measure the impact of the environment.”

Related Links:
London Health Sciences Centre

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Reagent Documents Platform
My.ral-diagnostics.fr
New
Rapid Calprotectin Test
BÜHLMANN fCAL Turbo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.