We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood-Based Diagnostic Technology Accurately Detects Prenatal Exposure Syndromes and Birth Disorders

By LabMedica International staff writers
Posted on 01 Aug 2024
Print article
Image: Blood testing using technology called EpiSign (Photo courtesy of LHSC)
Image: Blood testing using technology called EpiSign (Photo courtesy of LHSC)

Researchers are employing sophisticated technology and artificial intelligence (AI) to improve the diagnosis of rare diseases and prenatal exposure-related birth abnormalities, as detailed in two studies featured in the American Journal of Human Genetics and Genetics in Medicine. The technology, known as EpiSign, utilizes AI to analyze the epigenome — each individual's unique chemical code that overlays their DNA and regulates gene activity. Currently, EpiSign assists in diagnosing over 100 genetic conditions that have historically been challenging to detect.

The first study, conducted by the team at London Health Sciences Centre (LHSC, London, ON, Canada) that developed EpiSign, demonstrated its efficacy in identifying a group of birth disorders known as recurrent constellation of embryonic malformations (RCEMs). Despite being recognized for over seven decades, the specific causes and diagnostic markers for RCEMs have remained elusive, making it difficult to provide accurate diagnosis to affected families. EpiSign now offers a groundbreaking method to accurately detect RCEMs using just a blood test.

In the second study, the same research team applied EpiSign to identify a reliable biomarker for fetal valproate syndrome for the first time. This syndrome results from prenatal exposure to high levels of medications used in managing bipolar disorder, migraines, or epilepsy, leading to a range of neurodevelopmental issues in children, such as learning disabilities, communication and motor disorders, autism, and intellectual disabilities. This research is part of an ongoing effort by the EpiSign Discovery Research network, which is expanding to study and develop biomarkers for over 700 rare disorders. The team has highlighted the vast potential of this research, which could extend to diagnosing, prognosing, and treating a wide array of other conditions, including cancer.

“One in 20 people have a rare disease that could present at any point in their lives and can be caused by genes, environmental exposures, or their combined effects,” said Dr. Bekim Sadikovic, Lawson Scientist at LHSC, who developed the EpiSign technology. “We can help diagnose a growing number of genetic diseases and, now for the first time, we can look beyond the genome and accurately measure the impact of the environment.”

Related Links:
London Health Sciences Centre

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.