Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

By LabMedica International staff writers
Posted on 11 Apr 2024

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. More...

The disease is particularly lethal because it often doesn't cause symptoms in its early stages. The absence of effective screening tools and the disease's asymptomatic nature contribute to its diagnoses during the later stages when treatment options are less effective. A cost-effective, accessible detection method could revolutionize the clinical approach to ovarian cancer screening and potentially save lives. Although liquid biopsy technologies, which analyze blood for tumor-derived DNA, have been explored for noninvasive cancer detection, their utility in ovarian cancer has been limited. Now, a retrospective study presented at AACR 2024 has demonstrated that a blood-based machine learning assay, which combines cell-free DNA (cfDNA) fragment patterns with levels of the proteins CA125 and HE4, can effectively distinguish patients with ovarian cancer from healthy controls or patients with benign ovarian masses.

The DELFI (DNA Evaluation of Fragments for early Interception) method employs a novel liquid biopsy approach called fragmentomics. This technique improves the accuracy of tests by detecting circulation changes in the size and distribution of cfDNA fragments across the genome. Researchers at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) applied DELFI to analyze the fragmentomes of individuals with and without ovarian cancer. The study included plasma samples from 134 women with ovarian cancer, 204 women without cancer, and 203 women with benign adnexal masses. They trained a machine learning algorithm to integrate this fragmentome data with plasma levels of CA125 and HE4, two established biomarkers for ovarian cancer.

The researchers developed two models: one for screening ovarian cancer in an asymptomatic population and another for noninvasively differentiating benign from cancerous masses. At a specificity of over 99% (virtually eliminating false positives), the screening model detected 69%, 76%, 85%, and 100% of ovarian cancer cases from stages I to IV, respectively; the area under the curve (a measure of test accuracy) was 0.97 across all stages, significantly outperforming current biomarkers. For comparison, using CA125 levels alone identified 40%, 66%, 62%, and 100% of cases staged I-IV, respectively. The diagnostic model distinguished ovarian cancer from benign masses with an area under the curve of 0.87. The researchers plan to validate their models in larger cohorts to confirm these findings, but the initial results are promising.

“This study contributes to a large body of work from our group demonstrating the power of genome-wide cell-free DNA fragmentation and machine learning to detect cancers with high performance,” said Victor Velculescu, MD, PhD, FAACR, senior author of the study. “Our findings indicate that this combined approach resulted in improved performance for screening compared to existing biomarkers.”

Related Links:
Johns Hopkins Medicine


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.