We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomonitoring Device Improves Detection of Toxic Metals

By Labmedica staff writers
Posted on 25 Feb 2008
Print article
A new rapid, portable, and inexpensive detection system has been developed that identifies personal exposures to toxic lead and other dangerous heavy metals. The device can provide an accurate blood sample measurement from a simple finger prick, which is particularly important when sampling children.

Accumulation of lead in children can harm the developing brain, causing reduced IQ, learning disabilities, and behavioral problems, among other things. The U.S. Centers for Disease Control and Prevention (CDC; Atlanta, GA, USA) report that about 310,000 U.S. children ages one to five have high levels of lead in their blood. Recent studies also indicate a link between lead exposure and a decline in mental ability many years later. In addition, large numbers of industrial workers are routinely exposed to toxic heavy metals such as cadmium, lead, and mercury, which are known to induce various diseases.

The new analyzer system accurately detects lead and other toxic metals in urine and saliva as well as in blood. The device may be as much as 10 times less expensive than current plasma mass spectrometry (MS) systems, which require samples to be returned to the lab for time-consuming and expensive analysis The new system provides an excellent method of monitoring toxic metal exposures in high-risk populations, such as industrial workers, children, and people living in polluted areas.

Two classes of sensors are used for detecting lead and other heavy metals. The first is based on a flow injection system using a mercury-film electrode to analyze metals in blood, urine, or saliva samples. The second is based on a mercury-free approach of nanostructure materials. It either uses self-assembled monolayers on mesoporous supports (SAMMS) technology--or functionalized magnetic nanoparticles that provide excellent detection sensitivity at a ppb level.

A product of The U.S. Department of Energy's (DOE) Pacific Northwest National Laboratory (PNNL; Richland, WA, USA), the monitoring device is a bit larger than a lunchbox, and is suitable for use in the field. It has plug-and-play features that allow different sensors to be easily exchanged to detect a variety of heavy metal toxins. The entire system is battery-operated, and requires about 50% more power than a typical laptop computer.

Battelle, which operates PNNL for the DOE, filed a patent application in December 2007 for the improved sensor technology used in this next-generation biomonitoring device.


Related Links:
U.S. Centers for Disease Control and Prevention
U.S. Department of Energy's Pacific Northwest National Laboratory
Battelle
Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.